Improving high-dimensional prediction by empirical Bayes learning from co-data

Mark van de Wiel1,2,3, Magnus Münch1,4

1Dep of Epidemiology and Biostatistics, VU University medical center
2Dep of Mathematics, VU University, Amsterdam, NL
3MRC Biostatistics unit, Cambridge University, UK (Visiting Fellow)
4Mathematical Institute, Leiden University, NL

Our group: www.bigstatistics.nl
Setting

- **Prediction or Diagnosis**

- **Primary data**
 - Variables $i = 1, \ldots, p$; Individuals $j = 1, \ldots, n$; $p > n$
 - Focus on binary response Y_j (e.g. case vs control)
 - Measurements $X_j = (X_{1j}, \ldots, X_{pj})$
 - Goal: find f such that $Y_j \approx f(X_j)$
 - Here, f: *logistic regression*
 - Some form of regularization required

- **Focus**
 - Differential regularization based on prior information: *co-data*
Co-data

Definition Co-data: any information on the *variables* that does not use the response labels of the primary data.
Co-data

Definition Co-data: any information on the *variables* that does not use the response labels of the primary data
Use of co-data

Groups: Co-data determine G prior groups of variables

Idea: Use different penalty weights $\lambda_1, \ldots, \lambda_G$ across G co-data-based groups.
Use of co-data

Groups: Co-data determine G prior groups of variables

Idea: Use different penalty weights $\lambda_1, \ldots, \lambda_G$ across G co-data-based groups. $G = 3$:

E.g. Ridge: $\arg\max_\beta \{ \mathcal{L}(Y; \beta) - \sum_{g=1}^{G} \lambda_g ||\beta_g||_2 \}$

\rightarrow CV not attractive
Empirical Bayes (EB)

Empirical Bayes: estimate hyper-parameters from data

Relation penalty parameters \leftrightarrow hyper-parameters (prior)
Empirical Bayes (EB)

Empirical Bayes: estimate hyper-parameters from data

Relation penalty parameters ↔ hyper-parameters (prior)

E.g. logistic ridge: $\beta_i \sim N(0, \sigma_g^2)$, $i \in \text{group}_g$; $\lambda_g = 1/(2\sigma_g^2)$:

$$\arg\max_\beta \{\mathcal{L}(Y; \beta) - \sum_{g=1}^{G} \lambda_g \|\beta_g\|_2\} = \hat{\beta}_\lambda = \hat{\beta}_\sigma^{\text{MAP}} = \text{mode}(\pi_\sigma(\beta|Y))$$
Previous work

- **EB**: Morris, Carlin & Louis, Efron, George, Casella, Van Houwelingen, etc.
- Blog: David Robinson: varianceexplained.org
- Review: EB for high-dimensional prediction*
 - High-dimensional vs low-dimensional
 - Theory on EB estimator ($p \uparrow$) for simple linear case
 - Various EB methodologies
 - Spike-and-slab

Previous work

- **EB**: Morris, Carlin & Louis, Efron, George, Casella, Van Houwelingen, etc.
- **Blog**: David Robinson: varianceexplained.org
- **Review**: EB for high-dimensional prediction*
 - High-dimensional vs low-dimensional
 - Theory on EB estimator \((p \uparrow) \) for simple linear case
 - Various EB methodologies
 - Spike-and-slab

- **Groups**: group-lasso (Meier et al.) + many versions thereof

Formal EB: Maximum marginal Likelihood

$\beta = (\beta_1, \ldots, \beta_p)$. Prior(s): $\pi_\alpha(\beta)$, $\alpha = (\alpha_1, \ldots, \alpha_K)$

Marginal likelihood maximization:

$\hat{\alpha} = \arg\max_\alpha ML(\alpha)$, with $ML(\alpha) = \int_\beta L(Y; \beta) \pi_\alpha(\beta) d\beta$,

Optimization hard, because of the high-dimensional integral

• Laplace approximation (Shun & McCullagh, JRSSB, 1995)
• EM on Gibbs samples (Casella, Biostatistics, 2001) or on Variational Bayes approximation (Part II: Elastic Net).
• Moment estimation
Formal EB: Maximum marginal Likelihood

$\beta = (\beta_1, \ldots, \beta_p)$. Prior(s): $\pi_\alpha(\beta)$, $\alpha = (\alpha_1, \ldots, \alpha_K)$

Marginal likelihood maximization:

$$\hat{\alpha} = \arg\max_{\alpha} ML(\alpha), \text{ with } ML(\alpha) = \int_{\beta} L(Y; \beta) \pi_\alpha(\beta) d\beta,$$

Optimization hard, because of the high-dimensional integral

- EM on Gibbs samples (Casella, *Biostatistics*, 2001) or on Variational Bayes approximation (Part II: Elastic Net).
- Moment estimation
EB using moments: group-regularized ridge

Estimate $\sigma_g^2 (\lambda_g \propto \sigma_g^{-2})$, for ridge: $\beta_i \sim N(0, \sigma_g^2)$, $i \in \text{group } g$
EB using moments: group-regularized ridge

Estimate $\sigma_g^2 (\lambda_g \propto \sigma_g^{-2})$, for ridge: $\beta_i \sim N(0, \sigma_g^2), i \in \text{group } g$

Intuitive Idea:

1. Run an initial ridge regression with one λ
2. For $g = 1, 2$, consider mean squares of coefficients:
 \[
 MS_g = \frac{1}{p_g} \sum_{i \in \text{group } g} \hat{\beta}_i^2
 \]
3. If MS_g is large then σ_g^2 should be large (hence λ_g small)
EB using moments: group-regularized ridge

Estimate $\sigma_g^2 (\lambda_g \propto \sigma_g^{-2})$, for ridge: $\beta_i \sim N(0, \sigma_g^2), i \in \text{group } g$

Intuitive Idea:

1. Run an initial ridge regression with one λ
2. For $g = 1, 2$, consider mean squares of coefficients:

$$MS_g = \frac{1}{p_g} \sum_{i \in \text{group } g} \hat{\beta}_i^2$$

3. If MS_g is large then σ_g^2 should be large (hence λ_g small)

More difficult, because $E(MS_g)$ depends also on variables not in group g (biased estimation)
EB using moment estimation†

Two-group example: estimate σ_1^2, σ_2^2 ($\lambda_g \propto \sigma_g^{-2}$), for ridge:

$\beta_i \sim N(0, \sigma_i^2)$, $i \in$ group 1, $\beta_i \sim N(0, \sigma_i^2)$, $i \in$ group 2

Idea: equate empirical moment(s) to theoretical ones

†Details: Van de Wiel et al., Stat Med, 2016
EB using moment estimation†

Two-group example: estimate σ_1^2, σ_2^2 ($\lambda_g \propto \sigma_g^{-2}$), for ridge:

$\beta_i \sim N(0, \sigma_i^2), i \in \text{group } 1, \beta_i \sim N(0, \sigma_i^2), i \in \text{group } 2$

Idea: equate empirical moment(s) to theoretical ones

$$\frac{1}{p_1} \sum_{i \in \text{group } 1} \hat{\beta}_i^2 \approx \frac{1}{p_1} \sum_{i \in \text{group } 1} E_\beta \left[E[\hat{\beta}_i^2(Y)|\beta] \right] := f_1(\sigma_1^2, \sigma_2^2)$$

$$\frac{1}{p_2} \sum_{i \in \text{group } 2} \hat{\beta}_i^2 \approx \frac{1}{p_2} \sum_{i \in \text{group } 2} E_\beta \left[E[\hat{\beta}_i^2(Y)|\beta] \right] := f_2(\sigma_1^2, \sigma_2^2),$$

Result: System of equations $b_{\text{data}} = Ax$, $\lambda_g^{-1} \propto \hat{\sigma}_g^2 = x_g$.

†Details: Van de Wiel et al., Stat Med, 2016
Shrink the shrinkage parameters‡

Co-data may consist of many groups (e.g. pathways)

\[\hat{\sigma}^2 = A^{-1}b_{\text{data}} \text{ instable} \rightarrow \text{over-fitting.} \]

‡Details: Novianti et al., Bioinformatics, 2017
Shrink the shrinkage parameters\(^\dagger\)

Co-data may consist of many groups (e.g. pathways)

\[\sigma^2 = A^{-1}b_{data} \] instable \(\rightarrow \) over-fitting.

Solution: shrink \(A \) to stable target matrix, e.g. \(T = \text{diag}(A) \):

\[\tilde{A}_q = qA + (1 - q)T \]

\(^\dagger\)Details: Novianti et al., *Bioinformatics*, 2017
Effect of shrinkage

Real data, random groups of variables; Penalties: $\lambda_g = \lambda'_g \lambda$

λ'_g: lambda multiplier; $\log_2(\lambda'_g)$ should $\approx \log_2(1) = 0$

Left: No Shrinkage; Right: Shrinkage
Suppose we want variable selection...

Why can co-data help?
Suppose we want variable selection...

Nicest solution: A coherent framework for EB estimation in a group-regularized elastic net setting

§ Part II
Suppose we want variable selection...

Nicest solution: A coherent framework for EB estimation in a group-regularized elastic net setting

Ad-hoc solution:

1. Estimate group penalties from ridge regression, possibly for multiple groupings

2. Select k variables by introducing non-grouped L_1 penalty

3. Refit the model using the selected variables and their respective L_2 penalties

§ Part II
R-package GRridge, Github + Bioconductor

To be discussed during course
R-package GRridge, Github + Bioconductor

- Allows iteration; CVlik as stopping criterion
- Allows *multiple* sources of co-data, as groups
- Allows *overlapping* groups, e.g. pathways
- Auxiliary functions for co-data processing
- Built-in CV for comparison with ridge & lasso

To be discussed during course
Part II: Group-regularized elastic net

Group of feature j: g_j.

$g_j = 1$

$g_j = 2$

\vdots

$g_j = G$
Group-regularized elastic net

Model

\[Y_i | \beta \sim \text{Bern}(\expit(X_i^T \beta)), \]

\[\beta_j \overset{\text{ind}}{\sim} \exp \left[-\frac{1}{2} \left(\alpha \lambda \cdot \sqrt{\lambda'_{g(j)} |\beta_j|} + (1 - \alpha) \lambda \cdot \lambda'_{g(j)} \beta_j^2 \right) \right] \]

- Shrinks estimates towards zero
- ‘Global’ \(\alpha \) and \(\lambda \) determine overall shrinkage
- Elastic net with penalty weights \(w_{g(j)} = (\lambda'_{g(j)})^{1/2} \):
 \[\alpha \lambda |w_{g(j)} \cdot \beta_j| + (1 - \alpha) \lambda (w_{g(j)} \cdot \beta_j)^2 \]
Penalty parameter estimation

Cross-validation
 • Prohibitively slow and unstable with even few groups

Hybrid CV and Empirical Bayes
 • Fix α and estimate λ by CV for global shrinkage
 • Empirical Bayes estimation of λ' by MML

Maximum marginal likelihood (MML)

$$\hat{\lambda}' = \arg\max_{\lambda'} \int_{\beta} L(Y; \beta) \pi_{\lambda'}(\beta) d\beta$$
Latent variables

Extra latent variables (Polson et al., 2013; Li & Nin, 2010)

- $\omega \mid \beta \sim \prod_{i=1}^{n} \mathcal{P}G(1, |X_i^T\beta|)$, independent of Y_i
- $\beta \mid \tau \sim \prod_{j=1}^{p} \mathcal{N}(0, \frac{\tau_j^{-1}}{\lambda'_{g(j)}(1-\alpha)\lambda\tau_j})$ and
 $\tau \sim \prod_{j=1}^{p} \mathcal{T}G\left(\frac{1}{2}, \frac{8(1-\alpha)}{\alpha^2\lambda}, (1, \infty)\right)$
Latent variables

Extra latent variables (Polson et al., 2013; Li & Nin, 2010)

- $\omega \mid \beta \sim \prod_{i=1}^{n} PG(1, |X_i^T \beta|)$, independent of Y_i
- $\beta \mid \tau \sim \prod_{j=1}^{p} N \left(0, \frac{\tau_j^{-1}}{\lambda_{g(j)}(1-\alpha)\lambda_{\tau_j}} \right)$ and
 $\tau \sim \prod_{j=1}^{p} TG \left(\frac{1}{2}, \frac{8(1-\alpha)}{\alpha^2\lambda}, (1, \infty) \right)$

Computational reasons

- ω renders logistic part ‘easy’: it disappears in the calculations
- τ makes posterior calculations of β easier
EM algorithm

Recap Casella (2001):

\[\lambda'^{(k+1)} = \arg\max_{\lambda'} \mathbb{E}_{\omega, \beta, \tau \mid Y} \left[\log \mathcal{L}_{\lambda'}(Y, \omega, \beta, \tau; \lambda'^{(k)}) \right]. \]
EM algorithm

Recap Casella (2001):

$$\lambda^{(k+1)} = \arg\max_{\lambda'} \mathbb{E}_{\omega, \beta, \tau \mid Y} \left[\log \mathcal{L}_{\lambda'}(Y, \omega, \beta, \tau; \lambda^{(k)}) \right].$$

Exact expectation is difficult, options:

- Monte Carlo approximation: slow
- Laplace approximation: not accurate in high dimensional space
- Variational Bayes: fast and accurate (for the posterior mean)
Empirical-variational Bayes

Variational Bayes
Approximate posterior factorizes:

\[p(\omega, \beta, \tau | Y) \approx q(\omega)q(\beta)q(\tau) =: Q \]

\[\mathbb{E}_{p(\omega, \beta, \tau | Y)} [\log \mathcal{L}_{\lambda'}(\cdot)] \approx \mathbb{E}_{Q} [\log \mathcal{L}_{\lambda'}(\cdot)] =: f(\lambda') \]
Empirical-variational Bayes

Variational Bayes
Approximate posterior factorizes:

\[p(\omega, \beta, \tau | Y) \approx q(\omega)q(\beta)q(\tau) =: Q \]

\[\mathbb{E}_{p(\omega, \beta, \tau | Y)} [\log \mathcal{L}_{\lambda'}(\cdot)] \approx \mathbb{E}_Q [\log \mathcal{L}_{\lambda'}(\cdot)] =: f(\lambda') \]

EM algorithm
- E-step is an iterative VB algorithm itself to find \(Q \).
- M-step, \(\text{argmax}_{\lambda'} f(\lambda') \), is now convex and easily solved.
Automatic feature selection

Feature selection

1. Plug estimated penalty parameters into frequentist elastic net:

\[\hat{\beta} := \arg\max_{\beta} \log L(Y; \beta) + \frac{\alpha\lambda}{2} \sum_{j=1}^{p} \sqrt{\lambda'_{g(j)}|\beta_j|} + \frac{(1 - \alpha)\lambda}{2} \sum_{j=1}^{p} \lambda'_{g(j)}\beta_j^2 \]

2. Adjust \(\lambda \) until desired number of features selected

- The \(L_1 \)-norm penalty term ensures automatic feature selection
- Estimated penalty multipliers may enhance predictive performance
Example: Cervical cancer

Goal: Detect CIN3 lesions, to be removed surgically
Example: Diagnostics for cervical cancer

Goal: Select markers for classifying Normal vs CIN3
 → final goal is a cheap PCR assay

Data:

- microRNA sequencing data on *self-samples*
- \(n = 56 \): 32 Normal, 24 CIN3
- \(p = 772 \) (after filtering lowly abundant ones).
- Sqrt-transformed
- Standardized
Co-data: Conservation status

1. Non-conserved, human only (552)
2. Conserved across mammals (72)
3. Broadly conserved, across most vertebrates (148)
Co-data results

Conservation status

- GRridge
- gren, $\alpha = 0.05$
- gren, $\alpha = 0.5$
- gren, $\alpha = 0.95$
- not group-regularized

<table>
<thead>
<tr>
<th>λ_g</th>
<th>Not conserved</th>
<th>Broadly conserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend

- **GRridge**
- **gren, $\alpha = 0.05$**
- **gren, $\alpha = 0.5$**
- **gren, $\alpha = 0.95$**
- **not group-regularized**
Clinician:

“That’s all nice, but does the predictive accuracy improve?”
Performance under variable selection

AUC assessed by LOOCV

![Graph showing performance under variable selection with AUC assessed by LOOCV. The graph plots AUC against the number of selected features for different regularization methods and parameters.](image-url)
Extensions, other co-data applications

Generalized ridge: covariance structures (in progress)

Random Forest: Allows flexible co-data.**

Networks: Bayesian SEM: VB + EB + prior network††

Hybrid Bayes-Empirical Bayes: $\lambda_g = \lambda' \lambda_g$, $\lambda \sim$ hyper-prior, λ'_g fixed. Example in the Review.

Te Beest, et al., BMC Bioinf, 2017

Thanks

Magnus Münch (Leiden Univ / VUMc)
Thanks

Magnus Münch (Leiden Univ / VUmc)

Cervical cancer data: Saskia Wilting (Erasmus MC), Barbara Snoek (VUmc)

Co-data: Putri Novianti (VUmc)

Stats: Wessel van Wieringen, Carel Peeters (VUmc); Aad van der Vaart (Leiden Univ)
QUESTIONS?

COURSE: Please install GRidge, gren and dependencies.

See https://magnusmunch.github.io/co-data_learning/

††Slides available via: www.bigstatistics.nl