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Chapter 1

Introduction

This thesis is on probability theory, in particular on percolation, loop soups and
stochastic domination. It is based on the following papers:

(i) Erik I. Broman, Tim van de Brug, Wouter Kager, and Ronald Meester, Stochas-
tic domination and weak convergence of conditioned Bernoulli random vectors,
ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), no. 2, 403–434.

(ii) Tim van de Brug and Ronald Meester, On central limit theorems in the random
connection model, Phys. A 332 (2004), no. 1-4, 263–278.

(iii) Erik I. Broman, Tim van de Brug, Federico Camia, Matthijs Joosten, and
Ronald Meester, Fat fractal percolation and k-fractal percolation, ALEA Lat.
Am. J. Probab. Math. Stat. 9 (2012), no. 2, 279–301.

(iv) Tim van de Brug, Federico Camia, and Marcin Lis, Random walk loop soups
and conformal loop ensembles, arXiv:1407.4295 [math.PR] (2014).

These four papers form the basis for Chapters 2–5, respectively. Below we give an
introduction to each of the chapters, and we highlight the connections between them.
We also state the main results of this thesis in an informal way.

1.1 Stochastic domination

Stochastic domination is about ordering the probability distributions of two or more
random objects. A random object X is said to be stochastically dominated by a
similar random object Y if X is smaller, in a distributional sense, than Y . For
example, suppose that X and Y are random vectors on Rn with laws µ and ν,
respectively. Then X is stochastically dominated by Y if it is possible to define
random vectors U = (U1, . . . , Un) and V = (V1, . . . , Vn) on a common probability
space such the laws of U and V are equal to µ and ν, respectively, and U ≤ V , i.e.
Ui ≤ Vi for all i, with probability 1. Stochastic domination and coupling techniques
play an important role throughout this thesis and are used as a tool in many of the
proofs. In particular, in Chapter 4 we describe a coupling of two fractal percolation

9



10 CHAPTER 1. INTRODUCTION

models, and we use this coupling to derive new properties of one of the models from
known properties of the other model.

In Chapter 2, stochastic domination is not only used as a tool in the proofs but is
our main topic of interest. We study vectors X and Y that each consist of n indepen-
dent Bernoulli random variables with success probabilities p1, . . . , pn and q1, . . . , qn,
respectively, such that pi ≤ qi for all i. Clearly, in this case X is stochastically domi-
nated by Y . However, suppose that we consider the conditional law of X, conditioned
on the total number of successes being at least k for some integer k, and similar for Y
with the same integer k. Then in general the conditional law of X is not necessarily
stochastically dominated by the conditional law of Y . We identify conditions under
which we do have stochastic ordering of these conditional probability distributions.

Domination issues concerning the conditional law of Bernoulli vectors conditioned
on having at least a certain number of successes have come up in the literature a
number of times. In [3] and [4], the simplest case has been considered in which pi = p
and qi = q for some p < q. In [4], the conditional domination is used as a tool in the
study of random trees.

Here we study such domination issues in detail and generality. After dealing with
conditioned Bernoulli random vectors as above, we consider sequences of Bernoulli
vectors Xn and Y n of length n that each consist of M “blocks” such that the Bernoulli
random variables in block i have success probability pi and qi, respectively. Here M
does not depend on n and the size of each block is essentially linear in n. We consider
the conditional laws of Xn and Y n, conditioned on the total number of successes being
at least kn, where kn is also essentially linear in n. The main result of Chapter 2 is a
complete answer to the question with what maximal probability two such conditioned
Bernoulli vectors can be ordered in any coupling, when the length n of the vectors
tends to infinity.

1.2 Continuum percolation

In Chapters 3–5 we study probabilistic models in which the geometry is the key fea-
ture of the model. We consider spatial models that are defined by putting random
objects in two- or higher-dimensional Euclidean space. The models we study are ex-
amples of continuum percolation models, or related to continuum percolation models.
Continuum percolation originated in the work by Gilbert [26]. We refer to Meester
and Roy [39] for a rigorous introduction to continuum percolation.

In [26] Gilbert proposed the following random network. Take a Poisson point
process X in the Euclidean plane and connect each pair of points x and y of X if
the distance between x and y is less than R, for some constant R. This model was
introduced as a model of communication networks of short range stations spread over
a wide area. The points of the point process represent base stations, and two base
stations at locations x and y can communicate to each other if their distance is less
than R. The model also has applications in epidemiology, where the points in the
network represent infected individuals or herds. If sick individuals infect all others
within distance R then the disease spreads along the lines of the network.

Two natural generalizations of the model introduced in [26] are the Boolean model
and the random connection model. These two models are the canonical examples of
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Figure 1.1: Realization of the random connection model.

models in continuum percolation. The Boolean model is a random collection of balls
in d-dimensional Euclidean space defined as follows. Take a Poisson point process
X on Rd of density λ and, for each point x of X, put a ball centered at x with a
random radius according to some probability distribution ρ. The radii of the balls are
independent of each other and independent of the point process X. The union of the
balls is called the occupied set and its complement the vacant set. Both sets consist
of connected components, and connectivity properties of these components have been
studied in the literature, see e.g. [39]. Note that if ρ = R/2 a.s. then we obtain the
model from [26].

The random connection model is a random network defined as follows (see Figure
1.1). Take a Poisson point process X on Rd of density λ, and connect each pair of
points x and y of X with probability g(|x − y|), independently of all other pairs of
points, independently of X. Here g is a connection function, which is a non-increasing
function from the positive reals to [0, 1] that satisfies an integrability condition to avoid
trivial cases. Thus, in the random connection model the probability of connecting two
vertices x and y decreases as the distance between x and y increases. This allows for
a more flexible and more realistic modeling of the networks in telecommunications
and epidemiology mentioned above. Note that if g = 1R then we obtain the model
from [26]. Percolation properties of the random connection model such as phase
transitions and the existence and uniqueness of an infinite component have been
studied in the literature, see e.g. [39].

In Chapter 3, we consider a sequence of random connection models Xn on Rd,
where Xn is a Poisson point process on Rd of density λn, with λn/n

d → λ > 0.
The points of Xn are connected according to the connection function gn defined by
gn(x) = g(nx) for some connection function g. Let In be the number of isolated
vertices in the random connection model Xn in some bounded set K. The main
result in the paper [44] by Roy and Sarkar is a central limit theorem for In. Although
the statement of this result is correct, the proof in [44] has errors. We explain what
went wrong in the proof, and how this can be corrected. We also prove an extension
to connected components larger than a single vertex in case the connection function
has bounded support.
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Figure 1.2: Realization of the fractal percolation process, for d = 2 and N = 4, till
iteration step 3, by Matthijs Joosten. Black squares are retained; white squares are
removed.

1.3 Fractal percolation

The Boolean model from Section 1.2 has a multiscale analogue called the multiscale
Boolean model (see [39, 40]). This model is defined as follows. Take a sequence of
independent Boolean models Xn on Rd such that the balls in the Boolean model Xn

have radius N−n, for some positive constant N , and the centers of the balls are given
by a Poisson point process on Rd of density λNdn, for some λ. Thus, as n increases,
the density of the points in Xn increases and the radius of the balls decreases. The
union of all balls of all Boolean models is called the occupied set and its complement
the vacant set. Note that the vacant set can be obtained by removing all balls from
the space. The vacant set is a random fractal set, i.e. a random set that is statistically
self-similar in the sense that enlargements of small parts have the same law as the
whole set. Indeed, if we scale the model by a factor Nn, for some integer n, then the
result is statistically similar to the original model.

The original motivation for the introduction of the multiscale Boolean model was
a process introduced by Mandelbrot [38] called fractal percolation. The fractal perco-
lation model is a model similar in spirit to the multiscale Boolean model in the sense
that random objects are removed from the space via a sequential construction. In
fractal percolation the objects removed are not balls but cubes. The centers of the
cubes are not formed by the points of a Poisson point process but lie on a grid.

The fractal percolation model is defined as follows (see Figure 1.2). Let N ≥
2, d ≥ 2, and divide the d-dimensional unit cube in Nd subcubes of side length
1/N . Retain each subcube with probability p and remove it with probability 1 − p,
independently of other subcubes. The closure of the union of the retained subcubes
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forms a random subset D1 of the unit cube. Next, divide each retained subcube in Nd

cubes of side length 1/N2. Again, retain each smaller subcube with probability p and
remove it with probability 1− p, independently of other cubes. This gives a random
set D2 ⊂ D1. Iterating this procedure in every retained cube at every smaller scale
yields a decreasing sequence of random closed subsets Dn of the unit cube. The limit
set

⋂
nD

n is a random fractal set having intriguing connectivity properties which
have been extensively studied in the literature, see e.g. [5, 16,20,24].

It is easy to extend and generalize the fractal percolation model in ways that
preserve at least a certain amount of statistical self-similarity and generate random
fractal sets. It is interesting to study such models to obtain a better understanding
of general fractal percolation processes and explore possible new features that are not
present in the model introduced by Mandelbrot [38]. In Chapter 4 we are concerned
with two natural extensions which have previously appeared in the literature [17,18,
21].

The first extension we consider is k-fractal percolation. In this model the d-
dimensional unit cube is divided in Nd equal subcubes, k of which are retained in a
uniform way while the others are removed. The procedure is then iterated inside the
retained cubes at all smaller scales. We say that the model percolates if its limit set
contains a connected component (in the usual topological sense) that intersects two
opposite faces of the unit cube. Clearly, the probability that the model percolates is
a non-decreasing function of k. We define the percolation critical value of the model
as the minimal k such that the model percolates with positive probability. We show
that the (properly rescaled) percolation critical value converges to the critical value of
ordinary site percolation on a particular d-dimensional lattice as N tends to infinity.
This is analogous to the result of Falconer and Grimmett in [24] that the critical value
for Mandelbrot fractal percolation converges to the critical value of site percolation
on the same d-dimensional lattice.

The second fractal percolation model we study is fat fractal percolation. The con-
struction of the model is similar to Mandelbrot fractal percolation, but in fat fractal
percolation the probability pn of retaining a subcube at iteration step n depends on
n. We assume that pn is non-decreasing in n such that

∏
n pn > 0. The Lebesgue

measure of the limit set of the model is positive if the limit set is non-empty. We
prove that either the set of connected components larger than one point has Lebesgue
measure zero a.s. or its complement in the limit set has Lebesgue measure zero a.s.

1.4 Loop soups

The multiscale Boolean model mentioned in Section 1.3 is statistically self-similar in
the sense that enlargements of small parts of the model have the same law as the
model at the original scale. Because of the sequential construction of the model, this
self-similarity only holds for enlargements by a factor Nn for integer n. There is a
way to extend the multiscale Boolean model to a model that is fully scale invariant in
the sense that it is self-similar to enlargements by any factor. This is the fully scale
invariant Boolean model (see [6]), which is a random collection of countably many
balls of different sizes.

In Chapter 5 we study a random fractal in two-dimensional Euclidean space that



14 CHAPTER 1. INTRODUCTION

Figure 1.3: Realization of the Brownian loop soup with intensity λ = 1/2, with a
cut-off on small and large time-lengths of the loops, by Matthew Kleban.

is similar to the fully scale invariant Boolean model, in the sense that random objects
are removed from the space in a fully scale invariant way according to a Poisson point
process. However, the objects removed from the space are not disks but the interiors
of Brownian loops, i.e. two-dimensional Brownian bridges with different time-lengths.
This random fractal is the Brownian loop soup introduced by Lawler and Werner [32]
(see Figure 1.3). The Brownian loop soup is not only fully scale invariant but also
conformally invariant. It has attracted much attention in the literature because of this
property, and because of its relation with the Schramm-Loewner evolution (SLE) [46]
and, in particular, with the conformal loop ensembles (CLE) (see [48]).

SLE and CLE are random objects in two-dimensional Euclidean space that appear
naturally as the scaling limit of the boundaries of clusters of several interesting models
of statistical mechanics such as discrete percolation and the Ising model. Indeed, in
two dimensions and at the critical point, the scaling limit geometry of the boundaries
of clusters of these models is known (see [13–15, 19, 49]) or conjectured (see [28, 50])
to be described by some member of the one-parameter family of Schramm-Loewner
evolutions (SLEκ with κ > 0) and related conformal loop ensembles (CLEκ with
8/3 < κ < 8). SLEs can be used to describe the scaling limit of single interfaces;
CLEs are collections of loops and are therefore suitable to describe the scaling limit
of the collection of all macroscopic cluster boundaries at once.

For 8/3 < κ ≤ 4, CLEκ can be obtained [48] from the Brownian loop soup,
as follows. A realization of the Brownian loop soup in a bounded domain D with
intensity λ > 0 is the collection of loops contained in D from a Poisson realization of
a conformally invariant intensity measure λµ (see Chapter 5 for a definition). When
λ > 1/2, there is a unique cluster [48], where a cluster is a maximal collection of
loops that intersect each other. When λ ≤ 1/2, the loop soup is composed of disjoint
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clusters of loops [48], and the collection of outer boundaries of the outermost loop
soup clusters is distributed like a conformal loop ensemble (CLEκ) [47, 48, 55] with
8/3 < κ ≤ 4.

In [31] Lawler and Trujillo Ferreras introduced the random walk loop soup as a
discrete version of the Brownian loop soup, and showed that, under Brownian scaling,
it converges in an appropriate sense to the Brownian loop soup. The authors of [31]
focused on individual loops, showing that, with probability going to 1 in the scaling
limit, there is a one-to-one correspondence between “large” lattice loops from the
random walk loop soup and “large” loops from the Brownian loop soup such that
corresponding loops are close.

As explained above, the connection between the Brownian loop soup and SLE/CLE
goes through its loop clusters and their boundaries. In view of this observation, it is
interesting to investigate whether the random walk loop soup converges to the Brow-
nian loop soup in terms of loop clusters and their boundaries, not just in terms of
individual loops, as established in [31]. This is a natural and nontrivial question, due
to the complex geometry of the loops involved and of their mutual overlaps.

In Chapter 5, we consider random walk loop soups from which the “vanishingly
small” loops have been removed and establish convergence of their clusters and bound-
aries, in the scaling limit, to the clusters and boundaries of the corresponding Brow-
nian loop soups. In particular, these results imply that the collection of outer bound-
aries of outermost clusters composed of “large” lattice loops converges to CLE.
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Chapter 2

Stochastic domination and
weak convergence of
conditioned Bernoulli random
vectors

This chapter is based on the paper [8] by Broman, Van de Brug, Kager, and Meester.

2.1 Introduction and main results

Let X and Y be random vectors on Rn with respective laws µ and ν. We say that
X is stochastically dominated by Y , and write X � Y , if it is possible to define
random vectors U = (U1, . . . , Un) and V = (V1, . . . , Vn) on a common probability
space such the laws of U and V are equal to µ and ν, respectively, and U ≤ V
(that is, Ui ≤ Vi for all i ∈ {1, . . . , n}) with probability 1. In this case, we also write
µ � ν. For instance, when X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) are vectors of
n independent Bernoulli random variables with success probabilities p1, . . . , pn and
q1, . . . , qn, respectively, and 0 < pi ≤ qi < 1 for i ∈ {1, . . . , n}, we have X � Y .

In this chapter, we consider the conditional laws of X and Y , conditioned on
the total number of successes being at least k, or sometimes also equal to k, for
an integer k. In this first section, we will state our main results and provide some
intuition. All proofs are deferred to later sections.

Domination issues concerning the conditional law of Bernoulli vectors conditioned
on having at least a certain number of successes have come up in the literature a
number of times. In [3] and [4], a simplest case has been considered in which pi = p
and qi = q for some p < q. In [4], the conditional domination is used as a tool in the
study of random trees.

Here we study such domination issues in great detail and generality. The Bernoulli
vectors we consider have the property that the pi and qi take only finitely many values,
uniformly in the length n of the vectors. The question about stochastic ordering of the

17
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corresponding conditional distributions gives rise to a number of intriguing questions
which, as it turns out, can actually be answered. Our main result, Theorem 2.1.8,
provides a complete answer to the question with what maximal probability two such
conditioned Bernoulli vectors can be ordered in any coupling, when the length of the
vectors tends to infinity.

In Section 2.1.1, we will first discuss domination issues for finite vectors X and Y
as above. In order to deal with domination issues as the length n of the vectors tends
to infinity, it will be necessary to first discuss weak convergence of the conditional
distribution of a single vector. Section 2.1.2 introduces the framework for dealing
with vectors whose lengths tend to infinity, and Section 2.1.3 discusses their weak
convergence. Finally, Section 2.1.4 deals with the asymptotic domination issue when
n→∞.

2.1.1 Stochastic domination of finite vectors

As above, let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be vectors of independent
Bernoulli random variables with success probabilities p1, . . . , pn and q1, . . . , qn, re-
spectively, where 0 < pi ≤ qi < 1 for i ∈ {1, . . . , n}. For an event A, we shall
denote by L(X|A) the conditional law of X given A. Our first proposition states
that the conditional law of the total number of successes of X, conditioned on the
event {∑n

i=1Xi ≥ k}, is stochastically dominated by the conditional law of the total
number of successes of Y .

Proposition 2.1.1. For all k ∈ {0, 1, . . . , n},
L(
∑n
i=1Xi|

∑n
i=1Xi ≥ k) � L(

∑n
i=1 Yi|

∑n
i=1 Yi ≥ k).

In general, the conditional law of the full vector X is not necessarily stochastically
dominated by the conditional law of the vector Y . For example, consider the case
n = 2, p1 = p2 = q1 = p and q2 = 1− p for some p < 1

2 , and k = 1. We then have

P(X1 = 1 | X1 +X2 ≥ 1) =
1

2− p ,

P(Y1 = 1 | Y1 + Y2 ≥ 1) =
p

1− (1− p)p .

Hence, if p is small enough, then the conditional law of X is not stochastically dom-
inated by the conditional law of Y .

We would first like to study under which conditions we do have stochastic ordering
of the conditional laws of X and Y . For this, it turns out to be very useful to look at
the conditional laws of X and Y , conditioned on the total number of successes being
exactly equal to k, for an integer k. Note that if we condition on the total number
of successes being exactly equal to k, then the conditional law of X is stochastically
dominated by the conditional law of Y if and only if the two conditional laws are
equal. The following proposition characterizes stochastic ordering of the conditional
laws of X and Y in this case. First we define, for i ∈ {1, . . . , n},

βi :=
pi

1− pi
1− qi
qi

. (2.1.1)

The βi will play a crucial role in the domination issue throughout the chapter.
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Proposition 2.1.2. The following statements are equivalent:

(i) All βi (i ∈ {1, . . . , n}) are equal;

(ii) L(X|∑n
i=1Xi = k) = L(Y |∑n

i=1 Yi = k) for all k ∈ {0, 1, . . . , n};

(iii) L(X|∑n
i=1Xi = k) = L(Y |∑n

i=1 Yi = k) for some k ∈ {1, . . . , n− 1}.

We will use this result to prove the next proposition, which gives a sufficient
condition under which the conditional law of X is stochastically dominated by the
conditional law of Y , in the case when we condition on the total number of successes
being at least k.

Proposition 2.1.3. If all βi (i ∈ {1, . . . , n}) are equal, then for all k ∈ {0, 1, . . . , n},

L(X|∑n
i=1Xi ≥ k) � L(Y |∑n

i=1 Yi ≥ k).

The condition in this proposition is a sufficient condition, not a necessary condi-
tion. For example, if n = 2, p1 = p2 = 1

2 , q1 = 6
10 and q2 = 7

10 , then β1 6= β2, but we
do have stochastic ordering for all k ∈ {0, 1, 2}.

2.1.2 Framework for asymptotic domination

Suppose that we now extend our Bernoulli random vectors X and Y to infinite se-
quences X1, X2, . . . and Y1, Y2, . . . of independent Bernoulli random variables, which
we assume to have only finitely many distinct success probabilities. It then seems nat-
ural to let Xn and Y n denote the n-dimensional vectors (X1, . . . , Xn) and (Y1, . . . , Yn),
respectively, and consider the domination issue as n→∞, where we condition on the
total number of successes being at least kn = bαnc for some fixed number α ∈ (0, 1).

More precisely, with kn as above, let X̃n be a random vector having the law
L(Xn|

∑n
i=1Xi ≥ kn), and define Ỹ n similarly. Proposition 2.1.3 gives a sufficient

condition under which X̃n is stochastically dominated by Ỹ n for each n ≥ 1. If this
condition is not fulfilled, however, we might still be able to define random vectors U
and V , with the same laws as X̃n and Ỹ n, on a common probability space such that
the probability that U ≤ V is high (perhaps even 1). We denote by

supP(X̃n ≤ Ỹ n) (2.1.2)

the supremum over all possible couplings (U ,V ) of (X̃n, Ỹ n) of the probability that
U ≤ V . We want to study the asymptotic behavior of this quantity as n→∞.

As an example (and an appetizer for what is to come), consider the following
situation. For i ≥ 1 let the random variable Xi have success probability p for some
p ∈ (0, 1

2 ). For i ≥ 1 odd or even let the random variable Yi have success probability

p or 1− p, respectively. We will prove that supP(X̃n ≤ Ỹ n) converges to a constant
as n→∞ (Theorem 2.1.8 below). It turns out that there are three possible values of
the limit, depending on the value of α:

(i) If α < p, then supP(X̃n ≤ Ỹ n)→ 1.

(ii) If α = p, then supP(X̃n ≤ Ỹ n)→ 3
4 .
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(iii) If α > p, then supP(X̃n ≤ Ỹ n)→ 0.

In fact, to study the asymptotic domination issue, we will work in an even more
general framework, which we shall describe now. For every n ≥ 1, Xn is a vector of
n independent Bernoulli random variables. We assume that this vector is organized
in M “blocks”, such that all Bernoulli variables in block i have the same success
probability pi, for i ∈ {1, . . . ,M}. Similarly, Y n is a vector of n independent Bernoulli
random variables with the exact same block structure as Xn, but for Y n, the success
probability corresponding to block i is qi, where 0 < pi ≤ qi < 1 as before.

For given n ≥ 1 and i ∈ {1, . . . ,M}, we denote by min the size of block i,

where of course
∑M
i=1min = n. In the example above, there were two blocks, each

containing (roughly) one half of the Bernoulli variables, and the size of each block was
increasing with n. In the general framework, we only assume that the fractions min/n

converge to some number αi ∈ (0, 1) as n → ∞, where
∑M
i=1 αi = 1. Similarly, in

the example above we conditioned on the total number of successes being at least kn,
where kn = bαnc for some fixed α ∈ (0, 1). In the general framework, we only assume
that we are given a fixed sequence of integers kn such that 0 ≤ kn ≤ n for all n ≥ 1
and kn/n→ α ∈ (0, 1) as n→∞.

In this general framework, let X̃n be a random vector having the conditional
distribution of Xn, conditioned on the total number of successes being at least kn.
Observe that given the number of successes in a particular block, these successes are
uniformly distributed within the block. Hence, the distribution of X̃n is completely
determined by the distribution of the M -dimensional vector describing the numbers
of successes per block. Therefore, before we proceed to study the asymptotic be-
havior of the quantity (2.1.2), we shall first study the asymptotic behavior of this
M -dimensional vector.

2.1.3 Weak convergence

Consider the general framework introduced in the previous section. We define Xin

as the number of successes of the vector Xn in block i and write Σn :=
∑M
i=1Xin

for the total number of successes in Xn. Then Xin has a binomial distribution with
parameters min and pi and, for fixed n, the Xin are independent. In this section, we
shall study the joint convergence in distribution of the Xin as n → ∞, conditioned
on {Σn ≥ kn}, and also conditioned on {Σn = kn}.

First we consider the case where we condition on {Σn = kn}. We will prove
(Lemma 2.3.1 below) that theXin concentrate around the values cinmin, where the cin
are determined by the system of equations

1− cin
cin

pi
1− pi

=
1− cjn
cjn

pj
1− pj

∀i, j ∈ {1, . . . ,M};∑M
i=1 cinmin = kn.

(2.1.3)

We will show in Section 2.3 that the system (2.1.3) has a unique solution and that

cin → ci as n→∞,
for some ci strictly between 0 and 1. As we shall see, each component Xin is roughly
normally distributed around the central value cinmin, with fluctuations around this
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centre of the order
√
n. Hence, the proper scaling is obtained by looking at the

M -dimensional vector

Xn :=

(
X1n − c1nm1n√

n
,
X2n − c2nm2n√

n
, . . . ,

XMn − cMnmMn√
n

)
. (2.1.4)

Since we condition on {Σn = kn}, this vector is essentially an (M−1)-dimensional
vector, taking only values in the hyperplane

S0 := {(z1, . . . , zM ) ∈ RM : z1 + · · ·+ zM = 0}.

However, we want to view it as an M -dimensional vector, mainly because when we
later condition on {Σn ≥ kn}, Xn will no longer be restricted to a hyperplane. One
expects that the laws of the Xn converge weakly to a distribution which concentrates
on S0 and is, therefore, singular with respect to M -dimensional Lebesgue measure.
To facilitate this, it is natural to define a measure ν0 on the Borel sets of RM through

ν0( · ) := λ0( · ∩ S0), (2.1.5)

where λ0 denotes ((M −1)-dimensional) Lebesgue measure on S0, and to identify the
weak limit of the Xn via a density with respect to ν0. The density of the weak limit
is given by the function f : RM → R defined by

f(z) = 1S0
(z)

M∏
i=1

exp

(
− z2

i

2ci(1− ci)αi

)
. (2.1.6)

Theorem 2.1.4. The laws L(Xn|Σn = kn) converge weakly to the measure which
has density f/

∫
f dν0 with respect to ν0.

We now turn to the case where we condition on {Σn ≥ kn}. Our strategy will be
to first study the case where we condition on the event {Σn = kn + `}, for ` ≥ 0, and
then sum over `. We will calculate the relevant range of ` to sum over. In particular,
we will show that for large enough ` the probability P(Σn = kn + `) is so small, that
these ` do not have a significant effect on the conditional distribution of Xn. For kn
sufficiently larger than E(Σn), only ` of order o(

√
n) are relevant, which leads to the

following result:

Theorem 2.1.5. If α >
∑M
i=1 piαi or, more generally, (kn − E(Σn))/

√
n → ∞,

then the laws L(Xn|Σn ≥ kn) also converge weakly to the measure which has density
f/
∫
f dν0 with respect to ν0.

Finally, we consider the case where we condition on {Σn ≥ kn} with kn below
or around E(Σn), that is, when (kn − E(Σn))/

√
n → K ∈ [−∞,∞). An essential

difference compared to the situation in Theorem 2.1.5, is that the probabilities of the
events {Σn ≥ kn} do not converge to 0 in this case, but to a strictly positive constant.
In this situation, the right vector to look at is the M -dimensional vector

X p
n :=

(
X1n − p1m1n√

n
,
X2n − p2m2n√

n
, . . . ,

XMn − pMmMn√
n

)
.
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It follows from standard arguments that the unconditional laws of X p
n converge

weakly to a multivariate normal distribution with density h/
∫
hdλ with respect to

M -dimensional Lebesgue measure λ, where h : RM → R is given by

h(z) =

M∏
i=1

exp

(
− z2

i

2pi(1− pi)αi

)
. (2.1.7)

If kn stays sufficiently smaller than E(Σn), that is, when K = −∞, then the effect of
conditioning vanishes in the limit, and the conditional laws of X p

n given {Σn ≥ kn}
converge weakly to the same limit as the unconditional laws of X p

n. In general, if
K ∈ [−∞,∞), the conditional laws of X p

n given {Σn ≥ kn} converge weakly to the
measure which has, up to a normalizing constant, density h restricted to the half-space

HK := {(z1, . . . , zM ) ∈ RM : z1 + · · ·+ zM ≥ K}. (2.1.8)

Theorem 2.1.6. If (kn − E(Σn))/
√
n → K for some K ∈ [−∞,∞), then the laws

L(X p
n|Σn ≥ kn) converge weakly to the measure which has density h1HK /

∫
h1HK dλ

with respect to λ.

Remark 2.1.7. If (kn−E(Σn))/
√
n does not converge as n→∞ and does not diverge

to either ∞ or −∞, then the laws L(X p
n|Σn ≥ kn) do not converge weakly either.

This follows from our results above by considering limits along different subsequences
of the kn.

2.1.4 Asymptotic stochastic domination

Consider again the general framework for vectors Xn and Y n introduced in Sec-
tion 2.1.2. Recall that we write X̃n for a random vector having the conditional
distribution of the vector Xn, given that the total number of successes is at least kn.
For n ≥ 1 and i ∈ {1, . . . ,M}, we let X̃in denote the number of successes of X̃n

in block i. We define Ỹ n and Ỹin analogously. We want to study the asymptotic
behavior as n→∞ of the quantity

supP(X̃n ≤ Ỹ n),

where the supremum is taken over all possible couplings of X̃n and Ỹ n.

Define βi for i ∈ {1, . . . ,M} as in (2.1.1). As a first observation, note that if
all βi are equal, then by Proposition 2.1.3 we have supP(X̃n ≤ Ỹ n) = 1 for every
n ≥ 1. Otherwise, under certain conditions on the sequence kn, supP(X̃n ≤ Ỹ n)
will converge to a constant as n→∞, as we shall prove.

The intuitive picture behind this is as follows. Without conditioning, Xn � Y n

for every n ≥ 1. Now, as long as kn stays significantly smaller than E(Σn), the effect
of conditioning will vanish in the limit, and hence we can expect that supP(X̃n ≤
Ỹ n) → 1 as n → ∞. Suppose now that we start making the kn larger. This will
increase the number of successes X̃in of the vector X̃n in each block i, but as long
as kn stays below the expected total number of successes of Y n, increasing kn will
not change the numbers of successes per block significantly for the vector Ỹ n.



2.1. INTRODUCTION AND MAIN RESULTS 23

At some point, when kn becomes large enough, there will be a block i such that
X̃in becomes roughly equal to Ỹin. We shall see that this happens for kn “around”
the value k̂n defined by

k̂n :=

M∑
i=1

pimin

pi + βmax(1− pi)
,

where βmax := max{β1, . . . , βM}. Therefore, the sequence k̂n will play a key role in our

main result. What will happen is that as long as kn stays significantly smaller than k̂n,
X̃in stays significantly smaller than Ỹin for each block i, and hence supP(X̃n ≤
Ỹ n) → 1 as n → ∞. For kn around k̂n there is a “critical window” in which

interesting things occur. Namely, when (kn−k̂n)/
√
n converges to a finite constant K,

supP(X̃n ≤ Ỹ n) converges to a constant PK which is strictly between 0 and 1.

Finally, when kn is sufficiently larger than k̂n, there will always be a block i such that
X̃in is significantly larger than Ỹin. Hence, supP(X̃n ≤ Ỹ n)→ 0 in this case.

Before we state our main theorem which makes this picture precise, let us first
define the non-trivial constant PK which occurs as the limit of supP(X̃n ≤ Ỹ n)
when kn is in the critical window. To this end, let

I := {i ∈ {1, . . . ,M} : βi = βmax},

and define positive numbers a, b and c by

a2 =
∑
i∈I

βmaxpi(1− pi)αi
(pi + βmax(1− pi))2

=
∑
i∈I

qi(1− qi)αi; (2.1.9a)

b2 =
∑
i/∈I

βmaxpi(1− pi)αi
(pi + βmax(1− pi))2

; (2.1.9b)

c2 = a2 + b2. (2.1.9c)

As we shall see later, these numbers will come up as variances of certain normal
distributions. Let Φ: R → (0, 1) denote the distribution function of the standard
normal distribution. For K ∈ R, define PK by

PK =


1−

∫ c−b
ac K

−∞

e−z
2/2

√
2π

Φ
(
K−az
b

)
− Φ

(
K
c

)
1− Φ

(
K
c

) dz if α =
∑M
i=1 piαi,

Φ

(
bK

ac
− 1

a
RK

)
+ Φ

(
−K
a

+
b

ac
RK

)
if α >

∑M
i=1 piαi.

(2.1.10)

where RK =
√
K2 + c2 log(c2/b2). It will be made clear in Section 2.4 where these

formulas for PK come from. We will show that PK is strictly between 0 and 1. In
fact, it is possible to show that both expressions for PK are strictly decreasing in K
from 1 to 0, but we omit the (somewhat lengthy) derivation of this fact here.

Theorem 2.1.8. If all βi (i ∈ {1, . . . ,M}) are equal, then we have that supP(X̃n ≤
Ỹ n) = 1 for every n ≥ 1. Otherwise, the following holds:

(i) If (kn − k̂n)/
√
n→ −∞, then supP(X̃n ≤ Ỹ n)→ 1.
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(ii) If (kn − k̂n)/
√
n→ K for some K ∈ R, then supP(X̃n ≤ Ỹ n)→ PK .

(iii) If (kn − k̂n)/
√
n→∞, then supP(X̃n ≤ Ỹ n)→ 0.

Remark 2.1.9. If βi 6= βj for some i 6= j, and (kn − k̂n)/
√
n does not converge as

n → ∞ and does not diverge to either ∞ or −∞, then supP(X̃n ≤ Ỹ n) does not
converge either. This follows from the strict monotonicity of PK , by considering the
limits along different subsequences of the kn.

To demonstrate Theorem 2.1.8, recall the example from Section 2.1.2. Here βmax =
1, k̂n = pn, I = {1} and a2 = b2 = 1

2p(1 − p). If α = p, then we have that

(kn − k̂n)/
√
n→ 0 as n→∞. Hence, by Theorem 2.1.8, supP(X̃n ≤ Ỹ n) converges

to

P0 = 1− 2

∫ 0

−∞

e−z
2/2

√
2π

(Φ(−z)− 1/2) dz =
3

4
.

In fact, Theorem 2.1.8 shows that we can obtain any value between 0 and 1 for the
limit by adding bK√nc successes to kn, for K ∈ R.

Next we turn to the proofs of our results. Results in Section 2.1.1 are proved in
Section 2.2, results in Section 2.1.3 are proved in Section 2.3 and finally, results in
Section 2.1.4 are proved in Section 2.4.

2.2 Stochastic domination of finite vectors

Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be vectors of independent Bernoulli ran-
dom variables with success probabilities p1, . . . , pn and q1, . . . , qn respectively, where
0 < pi ≤ qi < 1 for i ∈ {1, . . . , n}.

Suppose that pi = p for all i. Then
∑n
i=1Xi has a binomial distribution with

parameters n and p. The quotient

P(
∑n
i=1Xi = k + 1)

P(
∑n
i=1Xi = k)

=
n− k
k + 1

p

1− p

is strictly increasing in p and strictly decreasing in k, and it is also easy to see that

L(X|∑n
i=1Xi = k) � L(X|∑n

i=1Xi = k + 1).

The following two lemmas show that these two properties hold for general success
probabilities p1, . . . , pn.

Lemma 2.2.1. For k ∈ {0, 1, . . . , n− 1}, consider the quotients

Qnk :=
P(
∑n
i=1Xi = k + 1)

P(
∑n
i=1Xi = k)

(2.2.1)

and
P(
∑n
i=1Xi ≥ k + 1)

P(
∑n
i=1Xi ≥ k)

. (2.2.2)

Both (2.2.1) and (2.2.2) are strictly increasing in p1, . . . , pn for fixed k, and strictly
decreasing in k for fixed p1, . . . , pn.
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Proof. We only give the proof for (2.2.1), since the proof for (2.2.2) is similar. First
we will prove that Qnk is strictly increasing in p1, . . . , pn for fixed k. By symmetry,
it suffices to show that Qnk is strictly increasing in p1. We show this by induction
on n. The base case n = 1, k = 0 is immediate. Next note that for n ≥ 2 and
k ∈ {0, . . . , n− 1},

Qnk =
P(
∑n−1
i=1 Xi = k)pn + P(

∑n−1
i=1 Xi = k + 1)(1− pn)

P(
∑n−1
i=1 Xi = k − 1)pn + P(

∑n−1
i=1 Xi = k)(1− pn)

=
pn +Qn−1

k (1− pn)

pn/Q
n−1
k−1 + (1− pn)

,

which is strictly increasing in p1 by the induction hypothesis (in the case k = n− 1,
use Qn−1

k = 0, and in the case k = 0, use 1/Qn−1
k−1 = 0).

To prove that Qnk is strictly decreasing in k for fixed p1, . . . , pn, note that since
Qnk is strictly increasing in pn for fixed k ∈ {1, . . . , n− 2}, we have

0 <
∂

∂pn
Qnk =

∂

∂pn

pn +Qn−1
k (1− pn)

pn/Q
n−1
k−1 + (1− pn)

=
1−Qn−1

k /Qn−1
k−1(

pn/Q
n−1
k−1 + (1− pn)

)2 .
Hence, Qn−1

k < Qn−1
k−1 . This argument applies for any n ≥ 2.

Let Xk = (Xk
1 , . . . , X

k
n) have the conditional law of X, conditioned on the event

{∑n
i=1Xi = k}. Our next lemma gives an explicit coupling of the Xk in which

they are ordered. The existence of such a coupling was already proved in [27, Propo-
sition 6.2], but our explicit construction is new and of independent value. In our
construction, we freely regard Xk as a random subset of {1, . . . , n} by identifying Xk

with {i ∈ {1, . . . , n} : Xk
i = 1}. For any K ⊂ {1, . . . , n}, let {XK = 1} denote the

event {Xi = 1 ∀i ∈ K}, and for any I ⊂ {1, . . . , n} and j ∈ {1, . . . , n}, define

γj,I :=
∑

L⊂{1,...,n} : |L|=|I|+1

1(j ∈ L)

|L \ I| P(XL = 1 |∑n
i=1Xi = |I|+ 1).

Lemma 2.2.2. For any I ⊂ {1, . . . , n}, the collection {γj,I}j∈{1,...,n}\I is a probability

vector. Moreover, if I is picked according to Xk and then j is picked according to
{γj,I}j∈{1,...,n}\I , the resulting set J = {I, j} has the same distribution as if it was

picked according to Xk+1. Therefore, we can couple the sequence {Xk}nk=1 such that
P(X1 ≤X2 ≤ · · · ≤Xn−1 ≤Xn) = 1.

Proof. Throughout the proof, I, J , K and L denote subsets of {1, . . . , n}, and we
simplify notation by writing Σn :=

∑n
i=1Xi. First observe that∑

j /∈I
γj,I =

∑
L : |L|=|I|+1

P(XL = 1 | Σn = |I|+ 1) = 1,

which proves that the {γj,I}j /∈I form a probability vector, since γj,I ≥ 0.
Next note that for any K containing j,

P(XK = 1 | Σn = |K|)
P(XK\{j} = 1 | Σn = |K| − 1)

=
P(Xj = 1)

P(Xj = 0)

P(Σn = |K| − 1)

P(Σn = |K|) . (2.2.3)
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Now fix J , and for j ∈ J , let I = I(j, J) = J \ {j}. Then for j ∈ J , by (2.2.3),

γj,I =
P(XJ = 1 | Σn = |J |)
P(XI = 1 | Σn = |I|)

∑
L : |L|=|J|

1(j ∈ L)

|L \ I| P(XL\{j} = 1 | Σn = |I|)

=
P(XJ = 1 | Σn = |J |)
P(XI = 1 | Σn = |I|)

∑
K : |K|=|I|

1(j /∈ K)

|J \K| P(XK = 1 | Σn = |I|),

where the second equality follows upon writing K = L \ {j}, and using |L \ I| =
|L \ J | + 1 = |K \ J | + 1 = |J \K| in the sum. Hence, by summing first over j and
then over K, we obtain∑

j∈J
γj,I P(XI = 1 | Σn = |I|) = P(XJ = 1 | Σn = |J |).

Corollary 2.2.3. For k ∈ {0, 1, . . . , n− 1} we have

L(X|∑n
i=1Xi ≥ k) � L(X|∑n

i=1Xi ≥ k + 1).

Proof. Using Lemma 2.2.2, we will construct random vectors U and V on a common
probability space such that U and V have the conditional distributions of X given
{∑n

i=1Xi ≥ k} and X given {∑n
i=1Xi ≥ k + 1}, respectively, and U ≤ V with

probability 1.
First pick an integerm according to the conditional law of

∑n
i=1Xi given {∑n

i=1Xi

≥ k}. If m ≥ k + 1, then pick U according to the conditional law of X given
{∑n

i=1Xi = m}, and set V = U . If m = k, then first pick an integer m+ ` according
to the conditional law of

∑n
i=1Xi given {∑n

i=1Xi ≥ k + 1}. Next, pick U and V
such that U and V have the conditional laws of X given {∑n

i=1Xi = m} and X
given {∑n

i=1Xi = m+`}, respectively, and U ≤ V . This is possible by Lemma 2.2.2.
By construction, U ≤ V with probability 1, and a little computation shows that U
and V have the desired marginal distributions.

Now we are in a position to prove Propositions 2.1.1, 2.1.2 and 2.1.3.

Proof of Proposition 2.1.1. By Lemma 2.2.1 we have that for ` ∈ {1, . . . , n− k},

P(
∑n
i=1Xi ≥ k + `)

P(
∑n
i=1Xi ≥ k)

=

`−1∏
j=0

P(
∑n
i=1Xi ≥ k + j + 1)

P(
∑n
i=1Xi ≥ k + j)

is strictly increasing in p1, . . . , pn. This implies that for ` ∈ {1, . . . , n− k},
P(
∑n
i=1Xi ≥ k + ` |∑n

i=1Xi ≥ k) ≤ P(
∑n
i=1 Yi ≥ k + ` |∑n

i=1 Yi ≥ k).

Proof of Proposition 2.1.2. Let x, y ∈ {0, 1}n be such that
∑n
i=1 xi =

∑n
i=1 yi and

let k =
∑n
i=1 xi. Write I = {i ∈ {1, . . . , n} : xi = 1} and, likewise, J = {i ∈

{1, . . . , n} : yi = 1}, and recall the definition (2.1.1) of βi. We have

P(X = x |∑n
i=1Xi = k)

P(X = y |∑n
i=1Xi = k)

=

∏
i∈I pi

∏
i/∈I(1− pi)∏

i∈J pi
∏
i/∈J(1− pi)

=
∏
i∈I\J

pi
1− pi

∏
i∈J\I

1− pi
pi

=

∏
i∈I\J βi∏
i∈J\I βi

P(Y = x |∑n
i=1 Yi = k)

P(Y = y |∑n
i=1 Yi = k)

. (2.2.4)
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Since |I| = |J | = k, we have |I \ J | = |J \ I|. Hence, (i) implies (ii), and (ii)
trivially implies (iii). To show that (iii) implies (i), suppose that L(X|∑n

i=1Xi =
k) = L(Y |∑n

i=1 Yi = k) for a given k ∈ {1, . . . , n− 1}. Let i ∈ {2, . . . , n} and let K
be a subset of {2, . . . , n}\{i} with exactly k−1 elements. Choosing I = {1}∪K and
J = K ∪ {i} in (2.2.4) yields βi = β1.

Proof of Proposition 2.1.3. By Proposition 2.1.2 and Lemma 2.2.2, we have for m ∈
{0, 1, . . . , n} and ` ∈ {0, 1, . . . , n−m}

L(X|∑n
i=1Xi = m) � L(Y |∑n

i=1 Yi = m+ `).

Using this result and Proposition 2.1.1, we will construct random vectors U and V
on a common probability space such that U and V have the conditional distributions
of X given {∑n

i=1Xi ≥ k} and Y given {∑n
i=1 Yi ≥ k}, respectively, and U ≤ V

with probability 1.

First, pick integers m and m + ` such that they have the conditional laws of∑n
i=1Xi given {∑n

i=1Xi ≥ k} and
∑n
i=1 Yi given {∑n

i=1 Yi ≥ k}, respectively, and
m ≤ m + ` with probability 1. Secondly, pick U and V such that they have the
conditional laws of X given {∑n

i=1Xi = m} and Y given {∑n
i=1 Yi = m + `},

respectively, and U ≤ V with probability 1. A little computation shows that the
vectors U and V have the desired marginal distributions.

We close this section with a minor result, which gives a condition under which we
do not have stochastic ordering.

Proposition 2.2.4. If pi = qi for some i ∈ {1, . . . , n} but not for all i, then for
k ∈ {1, . . . , n− 1},

L(X|∑n
i=1Xi ≥ k) 6� L(Y |∑n

i=1 Yi ≥ k).

Proof. Without loss of generality, assume that pn = qn. We have

P(Xn = 1 |∑n
i=1Xi ≥ k)

=
pnP(

∑n−1
i=1 Xi ≥ k − 1)

pnP(
∑n−1
i=1 Xi ≥ k − 1) + (1− pn)P(

∑n−1
i=1 Xi ≥ k)

=
pn

pn + (1− pn)P(
∑n−1
i=1 Xi ≥ k)

/
P(
∑n−1
i=1 Xi ≥ k − 1)

>
qn

qn + (1− qn)P(
∑n−1
i=1 Yi ≥ k)

/
P(
∑n−1
i=1 Yi ≥ k − 1)

= P(Yn = 1 |∑n
i=1 Yi ≥ k),

where the strict inequality follows from Lemma 2.2.1.
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2.3 Weak convergence

We now turn to the framework for asymptotic domination described in Section 2.1.2
and to the setting of Section 2.1.3. Recall that Xin is the number of successes of
the vector Xn in block i. We want to study the joint convergence in distribution of
the Xin as n → ∞, conditioned on {Σn ≥ kn}, and also conditioned on {Σn = kn}.
Since we are interested in the limit n→∞, we may assume from the outset that the
values of n we consider are so large that kn and all min are strictly between 0 and n,
to avoid degenerate situations.

We will first consider the case where we condition on the event {Σn = kn}.
Lemma 2.3.1 below states that theXin will then concentrate around the values cinmin,
where the cin are determined by the system of equations (2.1.3), which we repeat here
for the convenience of the reader:

1− cin
cin

pi
1− pi

=
1− cjn
cjn

pj
1− pj

∀i, j ∈ {1, . . . ,M};∑M
i=1 cinmin = kn.

(2.1.3)

Before we turn to the proof of this concentration result, let us first look at the sys-
tem (2.1.3) in more detail. If we write

An =
1− cin
cin

pi
1− pi

(2.3.1)

for the desired common value for all i, then

cin =
pi

pi +An(1− pi)
.

Note that this is equal to 1 for An = 0 and to pi for An = 1, and strictly decreasing
to 0 as An →∞, so that there is a unique An > 0 such that

M∑
i=1

cinmin =

M∑
i=1

pimin

pi +An(1− pi)
= kn. (2.3.2)

It follows that the system (2.1.3) does have a unique solution, characterized by this

value of An. Moreover, it follows from (2.3.2) that if kn > E(Σn) =
∑M
i=1 pimin,

then An < 1. Furthermore, kn/n → α and min/n → αi. Hence, by dividing both
sides in (2.3.2) by n, and taking the limit n→∞, we see that the An converge to the
unique positive number A such that

M∑
i=1

piαi
pi +A(1− pi)

= α,

where A = 1 if α =
∑M
i=1 piαi. As a consequence, we also have that

cin → ci =
pi

pi +A(1− pi)
as n→∞.
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Note that the ci are the unique solution to the system of equations
1− ci
ci

pi
1− pi

=
1− cj
cj

pj
1− pj

∀i, j ∈ {1, . . . ,M};∑M
i=1 ciαi = α.

Observe also that ci = pi in case A = 1, or equivalently
∑M
i=1 piαi = α, which is the

case when the total number of successes kn is within o(n) of the mean E(Σn). The
concentration result:

Lemma 2.3.1. Let c1n, . . . , cMn satisfy (2.1.3). Then for each i and all positive
integers r, we have that

P(|Xin − cinmin| ≥Mr | Σn = kn) ≤ 2Me−(M−1)r2/n.

Proof. The idea of the proof is as follows. Condition on {Σn = kn}, and consider the
event that for some i 6= j we have that Xin = cinmin + s, and Xjn = cjnmjn − t, for
some positive numbers s and t. We will show that if the cin satisfy (2.1.3), the event
obtained by increasing Xin by 1 and decreasing Xjn by 1 has smaller probability.
This establishes that the conditional distribution of the Xin is maximal at the central
values cinmin identified by the system (2.1.3). The precise bound in Lemma 2.3.1
also follows from the argument.

Now for the details. Let s and t be nonnegative real numbers such that cinmin+s
and cjnmjn − t are integers. By the binomial distributions of Xin and Xjn and their
independence, if it is the case that 0 ≤ cinmin + s < min and 0 < cjnmjn − t ≤ mjn,
then

P(Xin = cinmin + s+ 1, Xjn = cjnmjn − t− 1)

P(Xin = cinmin + s,Xjn = cjnmjn − t)

=

(
min − cinmin − s
cinmin + s+ 1

pi
1− pi

)(
cjnmjn − t

mjn − cjnmjn + t+ 1

1− pj
pj

)
≤
(
min − cinmin − s

cinmin

pi
1− pi

)(
cjnmjn − t

mjn − cjnmjn

1− pj
pj

)
.

Hence, if the cin satisfy (2.1.3), then using 1− z ≤ exp(−z) we obtain

P(Xin = cinmin + s+ 1, Xjn = cjnmjn − t− 1)

P(Xin = cinmin + s,Xjn = cjnmjn − t)

≤
(

1− s

min − cinmin

)(
1− t

cjnmjn

)
≤ exp

(
−s+ t

n

)
.

It follows by iteration of this inequality, that for all real s, t ≥ 0 and all integers u ≥ 0,

P(Xin = cinmin + s+ u,Xjn = cjnmjn − t− u)

≤ exp

(
− (s+ t)u

n

)
P(Xin = cinmin + s,Xjn = cjnmjn − t). (2.3.3)
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Now fix i, and observe that for all integers r > 0,

P(Xin ≥ cinmin +Mr,Σn = kn)

=
∑

`1,...,`M∈N0 :
`1+···+`M=kn

1(`i ≥ cinmin +Mr)P(Xkn = `k ∀k).

But if `1 + · · ·+ `M = kn and `i ≥ cinmin +Mr, then there must be some j 6= i such
that `j ≤ cjnmjn − r. Therefore,

P(Xin ≥ cinmin +Mr,Σn = kn)

≤
M∑
j=1

∑
`1,...,`M∈N0 :
`1+···+`M=kn

1
(
`i ≥ cinmin +Mr
`j ≤ cjnmjn − r

)
P(Xkn = `k ∀k).

By independence of the Xin and using (2.3.3) with s = (M − 1)r, t = 0 and u = r,
we now obtain

P(Xin ≥ cinmin +Mr,Σn = kn)

≤ e−(M−1)r2/n
M∑
j=1

∑
`1,...,`M∈N0 :
`1+···+`M=kn

1
(
`i ≥ cinmin +Mr − r

`j ≤ cjnmjn

)
P(Xkn = `k ∀k)

≤Me−(M−1)r2/nP(Σn = kn).

This proves that

P(Xin ≥ cinmin +Mr | Σn = kn) ≤Me−(M−1)r2/n.

Similarly, one can prove that

P(Xin ≤ cinmin −Mr | Σn = kn) ≤Me−(M−1)r2/n.

As we have already mentioned, we expect that the Xin have fluctuations around
their centres of the order

√
n. It is therefore natural to look at the M -dimensional

vector

Xn :=

(
X1n − x1n√

n
,
X2n − x2n√

n
, . . . ,

XMn − xMn√
n

)
, (2.3.4)

where the vector xn = (x1n, . . . , xMn) represents the centre around which the Xin

concentrate. To prove weak convergence of Xn, we will not set xin equal to cinmin,
because the latter numbers are not necessarily integer, and it will be more convenient
if the xin are integers. So instead, for each fixed n, we choose the xin to be nonnegative
integers such that |xin − cinmin| < 1 for all i, and

∑M
i=1 xin = kn. Of course, the

vector Xn as it is defined in (2.3.4), and the vector defined in (2.1.4) have the same
weak limit. In our proofs of Theorems 2.1.4 and 2.1.5, Xn will refer to the vector
defined in (2.3.4).

If we condition on {Σn = kn}, then the vector Xn will only take values in the
hyperplane

S0 := {(z1, . . . , zM ) ∈ RM : z1 + · · ·+ zM = 0}.
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o o
σ−→

Figure 2.1: The shear transformation σ (illustrated here for M = 2) maps sheared
cubes to cubes. The dots are the sites of the integer lattice Z2. The gray band on
the left encompasses those sheared cubes that intersect S0.

However, as we have already explained in the introduction, we still regard Xn as
an M -dimensional vector, because we will also condition on {Σn ≥ kn}, in which
case Xn is not restricted to a hyperplane. To deal with this, it turns out that for
technical reasons which will become clear later, it is useful to introduce the projection
π : (z1, . . . , zM ) 7→ (z1, . . . , zM−1) and the shear transformation σ : (z1, . . . , zM ) 7→
(z1, . . . , zM−1, z1 + · · · + zM ). We can then define a metric ρ on RM by setting
ρ(x, y) := |σx − σy|, where |·| denotes Euclidean distance. See Figure 2.1 for an
illustration.

Using the projection π, we now define a new measure µ0 on the Borel subsets
of RM , which is concentrated on S0, by

µ0( · ) := λM−1(π( · ∩ S0)),

where λM−1 is the ordinary Lebesgue measure on RM−1. Note that up to a multi-
plicative constant, µ0 is equal to the measure ν0 defined in Section 2.3, so we could
have stated Theorems 2.1.4 and 2.1.5 equally well with µ0 instead of ν0. In the proofs
it turns out to be more convenient to work with µ0, however, so that is what we shall
do.

Our proofs of Theorems 2.1.4 and 2.1.5 resemble classical arguments to prove
weak convergence of random vectors living on a lattice via a local limit theorem and
Scheffé’s theorem, see for instance [1, Theorem 3.3]. However, we cannot use these
classic results here, for two reasons. First of all, in Theorem 2.1.5 our random vectors
live on an M -dimensional lattice, but in the limit all the mass collapses onto a lower-
dimensional hyperplane, leading to a weak limit which is singular with respect to
M -dimensional Lebesgue measure. The classic arguments do not cover this case of a
singular limit.

Secondly, we are considering conditioned random vectors, for which it is not so
obvious how to obtain a local limit theorem directly. Our solution is to get rid of
the conditioning by considering ratios of conditioned probabilities, and prove a local
limit theorem for these ratios. An extra argument will then be needed to prove weak
convergence. Since we cannot resort to classic arguments here, we have to go through
the proofs in considerable detail.
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2.3.1 Proof of Theorem 2.1.4

As we have explained above, the key idea in the proof of Theorem 2.1.4 is that we can
get rid of the awkward conditioning by considering ratios of conditional probabilities,
rather than the conditional probabilities themselves. Thus, we will be dealing with
ratios of binomial probabilities, and the following lemma addresses the key properties
of these ratios needed in the proof. The lemma resembles standard bounds on bino-
mial probabilities, but we point out that here we are considering ratios of binomial
probabilities which centre around cinmin rather than around the mean pimin. We
also note that actually, the lemma is stronger than required to prove Theorem 2.1.4,
but we will need this stronger result to prove Theorem 2.1.5 later.

Lemma 2.3.2. Recall the definition (2.3.1) of An. Fix i ∈ {1, 2, . . . ,M} and let
b1, b2, . . . be a sequence of positive integers such that bn/

√
n → 0 as n → ∞. Then,

for every z ∈ R,

sup
x : |x−xin|<bn
r : |r−z√n|<bn

∣∣∣∣ 1

Arn

P(Xin = x+ r)

P(Xin = x)
− exp

(
− z2

2ci(1− ci)αi

)∣∣∣∣→ 0.

Furthermore, there exist constants B1
i , B

2
i <∞ such that for all n and r,

sup
x : |x−xin|<bn

1

Arn

P(Xin = x+ r)

P(Xin = x)
≤ B1

i

(
1 +

r4

n2

)
exp

(
B2
i

|r|√
n
− 1

2

r2

n

)
.

Proof. Robbins’ note on Stirling’s formula [43] states that for all m = 1, 2, . . . ,

√
2πmm+1/2 e−m+1/(12m+1) < m! <

√
2πmm+1/2 e−m+1/(12m),

from which it is straightforward to show that for all m = 0, 1, 2, . . . (so including
m = 0), there exists an ηm satisfying 1/7 < ηm < 1/5 such that

m! =
√

2π(m+ ηm)mm e−m =
√

2π[[m]]mm e−m, (2.3.5)

where we have introduced the notation [[m]] := m+ ηm.
Since Xin has the binomial distribution with parameters min and pi,

1

Arn

P(Xin = x+ r)

P(Xin = x)
=

x!

(x+ r)!

(min − x)!

(min − x− r)!

(
cin

1− cin

)r
.

Using (2.3.5), we can write this as the product of the three factors

P 1
in(x, r) =

(
[[x]]

[[x+ r]]

[[min − x]]

[[min − x− r]]

)1/2

P 2
in(x, r) =

(
cinmin

x

min − x
min − cinmin

)r
P 3
in(x, r) =

(
x

x+ r

)x+r(
min − x

min − x− r

)min−x−r
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for all x and r such that 0 < x < min and 0 ≤ x+ r ≤ min.
To study the convergence of P 3

in(x, r), first write

P 3
in(x, r) =

(
1− r

x+ r

)x+r(
1 +

r

min − x− r

)min−x−r
.

Using the fact that for all u > −1, (1 + u) lies between exp
(
u − 1

2u
2
)

and exp
(
u −

1
2u

2/(1 + u)
)
, a little computation now shows that P 3

in(x, r) is wedged in between

exp

(
−1

2

(min − r)r2

x(min − x− r)

)
and exp

(
−1

2

(min + r)r2

(x+ r)(min − x)

)
.

From this fact, it follows that for fixed z ∈ R,

sup
x : |x−xin|<bn
r : |r−z√n|<bn

∣∣∣∣P 3
in(x, r)− exp

(
− z2

2ci(1− ci)αi

)∣∣∣∣→ 0,

because xin/min → ci, hence x = cimin + o(n) and r = z
√
n + o(

√
n) under the

supremum, and min/n→ αi. Since |xin − cinmin| < 1, we also have that

sup
x : |x−xin|<bn
r : |r−z√n|<bn

∣∣P 1
in(x, r)− 1

∣∣→ 0 and sup
x : |x−xin|<bn
r : |r−z√n|<bn

∣∣P 2
in(x, r)− 1

∣∣→ 0.

Together with the uniform convergence of P 3
in(x, r), this establishes the first part of

Lemma 2.3.2.
We now turn to the second part of the lemma. If x and r are such that 0 < x < min

and 0 ≤ x+ r ≤ min, then min − r ≥ x > 0 and min + r ≥ min − x > 0, hence from
the bounds on P 3

in(x, r) given in the previous paragraph we can conclude that

P 3
in(x, r) ≤ exp

(
−1

2

r2

min

)
≤ exp

(
−1

2

r2

n

)
.

Next observe that if x is such that |x−xin| < bn, then |x−cinmin| < 1+bn, from which
it follows that uniformly in n, for all x and r such that 0 < x < min, 0 ≤ x+ r ≤ min

and |x− xin| < bn,

P 2
in(x, r) ≤

(
1 + const.× bn

n

)|r|
≤ exp

(
const.× |r|√

n

)
.

To finish the proof, it remains to bound P 1
in(x, r). To this end, observe first that

uniformly in n, for all x and r such that |x − xin| < bn and |r| < n3/4, P 1
in(x, r)

is bounded by a constant. On the other hand, uniformly for all x and r such that
0 < x < min and 0 ≤ x + r ≤ min, P 1

in(x, r) is bounded by a constant times n, and
n ≤ r4/n2 if |r| ≥ n3/4. Combining these observations, we see that uniformly in n,
for all x and r satisfying |x− xin| < bn and 0 ≤ x+ r ≤ min,

P 1
in(x, r) ≤ const.×

(
1 +

r4

n2

)
.



34 CHAPTER 2. STOCHASTIC DOMINATION

Proof of Theorem 2.1.4. For a point z in RM , let dzc be the point in ZM ρ-closest
to z (take the lexicographically smallest one if there is a choice). Graphically, this
means that the collection of those points z for which dzc = a comprises the sheared
cube a + σ−1(−1/2, 1/2]M , see Figure 2.1. Now, for each fixed z ∈ RM , set rzn =
(rz1n, . . . , r

z
Mn) := dz√nc. Observe that because (for fixed n) the xin sum to kn, if

rzn ∈ S0 we have that

P(
√
nXn = rzn | Σn = kn)

P(
√
nXn = 0 | Σn = kn)

=
P(
√
nXn = rzn)

P(
√
nXn = 0)

=

M∏
i=1

P(Xin = xin + rzin)

P(Xin = xin)
, (2.3.6)

where we have used the independence of the components Xin. If rzn /∈ S0, on the
other hand, this ratio obviously vanishes.

We now apply Lemma 2.3.2 to (2.3.6), taking bn = M for every n ≥ 1. Since∑M
i=1 r

z
in = 0 if rzn ∈ S0 and hence

∏M
i=1A

rzin
n = 1, the first part of Lemma 2.3.2

immediately implies that for all z ∈ RM ,

P(
√
nXn = rzn | Σn = kn)

P(
√
nXn = 0 | Σn = kn)

→ 1S0(z)

M∏
i=1

exp

(
− z2

i

2ci(1− ci)αi

)
= f(z)

as n→∞. To see how this will lead to Theorem 2.1.4, define fn : RM → R by

fn(z) := (
√
n)M P

(√
nXn = rzn

∣∣ Σn = kn
)
.

Then fn is a probability density function with respect to M -dimensional Lebesgue
measure λ. Moreover, if Zn is a random vector with this density, then the vector
Z ′n = dZn

√
nc/√n has the same distribution as the vector Xn, conditioned on

{Σn = kn}. Since clearly Zn and Z ′n must have the same weak limit, it is therefore
sufficient to show that the weak limit of Zn has density f/

∫
f dµ0 with respect to µ0.

Now, by what we have established above, we already know that

fn(z)

fn(0)
=
P(
√
nXn = rzn | Σn = kn)

P(
√
nXn = 0 | Σn = kn)

→ f(z) for every z ∈ RM .

Moreover, the second part of Lemma 2.3.2 applied to (2.3.6) shows that the ratios
fn(z)/fn(0) are uniformly bounded by some µ0-integrable function g(z). Thus it
follows by dominated convergence that for every Borel set A ⊂ RM ,∫

A

fn(z)

fn(0)
dµ0(z)→

∫
A

f(z) dµ0(z).

Next observe that 1 =
∫
fn dλ =

∫
n−1/2fn dµ0, because by the conditioning, fn

is nonzero only on the sheared cubes which intersect S0. Therefore, taking A = RM

in the previous equation yields n−1/2fn(0)→ (
∫
f dµ0)−1, which in turn implies that

for every Borel set A, ∫
A

n−1/2fn(z) dµ0(z)→
∫
A
f(z) dµ0(z)∫
f dµ0

.

In general,
∫
F
fn dλ 6=

∫
F
n−1/2fn dµ0 for an arbitrary Borel set F , but we have

equality here for sufficiently large n if F is a finite union of sheared cubes. Hence,
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if A is open, we can approximate A from the inside by unions of sheared cubes
contained in A to conclude that

lim inf
n→∞

∫
A

fn(z) dλ(z) ≥
∫
A
f(z) dµ0(z)∫
f dµ0

.

2.3.2 Proof of Theorem 2.1.5

We now turn to the case where we condition on {Σn ≥ kn}, for the same fixed sequence
kn → ∞ as before. To treat this case, we are going to consider what happens when
we condition on the event that Σn = kn + ` for some ` ≥ 0, and later sum over `. It
will be important for us to know the relevant range of ` to sum over. In particular, for
large enough ` we expect that the probability P(Σn = kn + `) will be so small, that
these ` will not influence the conditional distribution of the vector Xn in an essential
way. The relevant range of ` can be determined from the following lemma:

Lemma 2.3.3. For all positive integers s,

P(Σn ≥ kn + 2Ms) ≤M exp

(
− (kn − E(Σn) +Ms)s

Mn

)
P(Σn ≥ kn).

Proof. Let u be such that 0 < u < (1− pi)min. Observe that then, for all integers m
such that pimin + u ≤ m ≤ min,

P(Xin = m+ 1)

P(Xin = m)
=
min −m
m+ 1

pi
1− pi

≤
pimin − u pi

1−pi
pimin + u

,

hence

P(Xin = m+ 1)

P(Xin = m)
≤ 1− u

pimin + u

(
1 +

pi
1− pi

)
≤ 1− u

min
≤ 1− u

n
.

Since 1 − z ≤ exp(−z), by repeated application of this inequality it follows that for
all u > 0 and all positive integers t, if m is an integer such that m ≥ pimin + u, then

P(Xin = m+ t) ≤ exp

(
−ut
n

)
P(Xin = m). (2.3.7)

Now observe that if Σn ≥ E(Σn) + Mr + 2Ms, where s is a positive integer,
and r a real number such that r + s > 0, then for some k it must be the case that
Xkn ≥ pkmkn + r + 2s. Therefore,

P(Σn ≥ E(Σn) +Mr + 2Ms)

≤
∑

`1,...,`M∈N0 :
`1+···+`M≥E(Σn)+Mr+2Ms

M∑
k=1

1(`k ≥ pkmkn + r + 2s)P(Xin = `i ∀i).

But by (2.3.7), taking u = r + s and t = s,

1(`k ≥ pkmkn + r + 2s)P(Xin = `i ∀i)

≤ exp

(
− (r + s)s

n

)
P(Xkn = `k − s,Xin = `i ∀i 6= k),
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and therefore

P(Σn ≥ E(Σn) +Mr + 2Ms)

≤M exp

(
− (r + s)s

n

)
P(Σn ≥ E(Σn) +Mr + 2Ms− s)

≤M exp

(
− (r + s)s

n

)
P(Σn ≥ E(Σn) +Mr

)
.

Choosing r such that kn ≡ E(Σn) +Mr yields Lemma 2.3.3 (observe that the bound
holds trivially if r + s ≤ 0).

Lemma 2.3.3 shows that if α >
∑M
i=1 piαi, then for sufficiently large n, P(Σn ≥

kn + `) will already be much smaller than P(Σn ≥ kn) when ` is of order log n.

However, when α =
∑M
i=1 piαi, we need to consider ` of bigger order than

√
n for

P(Σn ≥ kn+`) to become much smaller than P(Σn ≥ kn). In either case, Lemma 2.3.3
shows that ` of larger order than

√
n become irrelevant.

Keeping this in mind, we will now look at the conditional distribution of the
vector Xn, conditioned on {Σn = kn+ `}. The first thing to observe is that for ` > 0,
the locations of the centres around which the components Xin concentrate will be
shifted to larger values. Indeed, these centres are located at c`inmin, where the c`in
are of course determined by the system of equations

1− c`in
c`in

pi
1− pi

=
1− c`jn
c`jn

pj
1− pj

∀i, j ∈ {1, . . . ,M};∑M
i=1 c

`
inmin = kn + `.

(2.3.8)

To find an explicit expression for the size of the shift c`in−cin, we can substitute c`in =
cin+δin into (2.3.8), and then perform an expansion in powers of the correction δin to
guess this correction to first order. This procedure leads us to believe that c`in must
be of the form

c`in = cin + cin(1− cin)d`n + e`in, (2.3.9)

where

d`n :=
`∑M

j=1 cjn(1− cjn)mjn

,

and e`in should be a higher-order correction. The following lemma shows that the
error terms e`in are indeed of second order in d`n, so that the effective shift in cin by
adding ` extra successes to our Bernoulli variables is given by cin(1 − cin)d`n. For
convenience, we assume in the lemma that |d`n| ≤ 1/2, which means that |`| cannot
be too large, but by Lemma 2.3.3, this does not put too severe a restriction on the
range of ` we can consider later.

Lemma 2.3.4. For all ` (positive or negative) such that |d`n| ≤ 1/2, we have that
|e`in| ≤ (d`n)2 for all i = 1, . . . ,M .

Proof. For ease of notation, write σin := cin(1− cin). As before, we write

A`n =
1− c`in
c`in

pi
1− pi

=
1− cin − σind`n − e`in
cin + σind`n + e`in

pi
1− pi
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for the desired common value for all i, so

e`in =
pi(1− cin − σind`n)−A`n(1− pi)(cin + σind

`
n)

A`n(1− pi) + pi
. (2.3.10)

As before, the value of A`n is uniquely determined by the requirement
∑M
i=1 c

`
inmin

= kn + `. Since
∑M
i=1 cinmin = kn and

∑M
i=1 σind

`
nmin = `, this requirement says

that
M∑
i=1

e`inmin = 0.

In particular, the e`in cannot be all positive or all negative, from which we derive,
using (2.3.10), that A`n must satisfy the double inequalities

min
i=1,...,M

{
pi(1− cin − σind`n)

(1− pi)(cin + σind`n)

}
≤ A`n ≤ max

i=1,...,M

{
pi(1− cin − σind`n)

(1− pi)(cin + σind`n)

}
.

A simple calculation establishes that

pi(1− cin − σind`n)

(1− pi)(cin + σind`n)
=

1− cin
cin

pi
1− pi

(
1 +

∞∑
k=1

(−(1− cin)d`n)k

1− cin

)
,

from which (using |d`n| ≤ 1/2) we can conclude that

1− cin
cin

pi
1− pi

(
1− d`n

)
≤ A`n ≤

1− cin
cin

pi
1− pi

(1− d`n + 2
(
d`n)2

)
,

since by (2.1.3), neither the lower bound nor the upper bound here depends on i.
Inserting the lower bound on A`n into (2.3.10) gives

e`in ≤
σin(1− cin)(d`n)2

1− (1− cin)d`n
≤ 1

2
(d`n)2,

where in the last step we used that |d`n| ≤ 1/2 and σin ≤ 1/4. Likewise, substituting
the upper bound on A`n into (2.3.10) yields

e`in ≥ −
σin(1 + cin)(d`n)2 + 2σin(1− cin)(d`n)3

1− (1− cin)d`n + 2(1− cin)(d`n)2
≥ −2σin(d`n)2

1− 1/2
≥ −(d`n)2.

For future use, we state the following corollary:

Corollary 2.3.5. If (kn −
∑M
i=1 cimin)/

√
n → K for some K ∈ [−∞,∞], then for

i ∈ {1, . . . ,M},
(cin − ci)min√

n
→ ci(1− ci)αi∑M

j=1 cj(1− cj)αj
K.

Remark 2.3.6. If (kn − E(Σn))/
√
n → K ∈ R, then α =

∑M
i=1 piαi and we have

ci = pi for all i ∈ {1, . . . ,M}. In this situation, Corollary 2.3.5 states that the vectors
X p
n − Xn, and hence also the same vectors conditioned on {Σn ≥ kn}, converge

pointwise to the vector whose i-th component is

pi(1− pi)αi∑M
j=1 pj(1− pj)αj

K.
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Proof of Corollary 2.3.5. First, suppose that K ∈ R. If ` =
∑M
i=1 cimin − kn and

the c`in satisfy (2.3.8), then c`in = ci. Hence, by Lemma 2.3.4,

ci − cin = cin(1− cin)d`n +O
(
(d`n)2

)
,

where

d`n =

∑M
i=1 cimin − kn∑M

j=1 cjn(1− cjn)mjn

= O
(
n−1/2

)
.

This implies

(ci − cin)min√
n

=
cin(1− cin)min∑M
j=1 cjn(1− cjn)mjn

∑M
i=1 cimin − kn√

n
+O

(
n−1/2

)
,

from which the result follows.
Next, suppose that K = ∞. Since cin is increasing as a function of kn, we have

by the first part of the proof

lim inf
n→∞

(cin − ci)min√
n

≥ ci(1− ci)αi∑M
j=1 cj(1− cj)αj

L

for all L ∈ R. Hence, the left-hand side is equal to∞. The proof for the case K = −∞
is similar.

When we condition on {Σn = kn + `}, then in analogy with what we have done
before, the natural scaled vector to consider would be the vector

X `
n :=

(
X1n − x`1n√

n
,
X2n − x`2n√

n
, . . . ,

XMn − x`Mn√
n

)
,

where the components of the vector x`n = (x`1n, . . . , x
`
Mn) identify the centres around

which the Xin concentrate. Here, the x`in are nonnegative integers chosen such that

|x`in − c`inmin| < 1 for all i, and
∑M
i=1 x

`
in = kn + `. Note that the vector X `

n is
simply a translation of Xn by (x`n − xn)/

√
n. Since Lemma 2.3.3 shows that if kn is

sufficiently larger than E(Σn), only values of ` up to small order in n are relevant,
the statement of Theorem 2.1.5 should not come as a surprise. To prove it, we need
to refine the arguments we used to prove Theorem 2.1.4.

Proof of Theorem 2.1.5. Assume that (kn − E(Σn))/
√
n→∞, and let

an := 2M

⌊
√
n

( √
n

kn − E(Σn)

)1/2
⌋
.

Note that then an → ∞ but an/
√
n → 0. Furthermore, Lemma 2.3.3 and a short

computation show that
P(Σn > kn + an)

P(Σn ≥ kn)
→ 0.

It is easy to see that from this last fact it follows that

sup
A

∣∣∣P(Xn ∈ A | Σn ≥ kn)− P(Xn ∈ A | kn ≤ Σn ≤ kn + an)
∣∣∣→ 0,
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1/
√
n

(2an + 1)/
√
n

Figure 2.2: We coarse-grain our densities by combining (2an+1)M sheared cubes into
larger sheared cubes. Here, we show this coarse-graining for M = 2 and an = 2. The
dots are the points in ((2an + 1)Z)M/

√
n. The combined sheared cubes have been

colored in a chessboard fashion as a visual aid.

where the supremum is over all Borel subsets A of RM . It is therefore sufficient to
consider the limiting distribution of the vector Xn conditioned on the event {kn ≤
Σn ≤ kn + an}, rather than on the event {Σn ≥ kn}.

As in the proof of Theorem 2.1.4, for z ∈ RM we let rzn = dz√nc, and we define
the functions fn : RM → R by setting

fn(z) := (
√
n)M P

(√
nXn = rzn

∣∣ kn ≤ Σn ≤ kn + an
)
.

As before, this is a probability density function with respect to Lebesgue measure λ
on RM , and if Zn is a random vector with this density, then the vector Z ′n =
dZn
√
nc/√n has the same distribution as the vector Xn conditioned on the event

{kn ≤ Σn ≤ kn + an}. Hence, it is enough to show that the weak limit of Zn has
density f/

∫
f dµ0 with respect to µ0.

An essential difference compared to the situation in Theorem 2.1.4, however, is
that the densities fn are no longer supported by the collection of points z for which
rzn is in the hyperplane S0 (i.e. the union of those sheared cubes that intersect S0).
Rather, the support now encompasses all the points z for which rzn is in any of the
hyperplanes

S` := {(z1, . . . , zM ) ∈ RM : z1 + · · ·+ zM = `}, ` = 0, 1, . . . , an,

because if rzn ∈ S`, then the event {√nXn = rzn} is contained in the event {Σn =
kn + `}. For this reason, the densities fn are not so convenient to work with here.
Instead, it is more convenient to “coarse-grain” our densities by spreading the mass
over sheared cubes of volume ((2an + 1)/

√
n)M rather than volume (1/

√
n)M , to the

effect that all the mass is again contained in the collection of sheared (coarse-grained)
cubes intersecting S0.

To this end, for given n we partition RM into the collection of sets{ 1√
n

(
a+ σ−1(−an − 1/2, an + 1/2]M

)
: a ∈

(
(2an + 1)Z

)M}
. (2.3.11)
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See Figure 2.2. For a given point z ∈ RM , we denote by Qzn the sheared cube in this
partition containing z. Now we can define the coarse-grained densities

gn(z) :=

( √
n

2an + 1

)M
P(Xn ∈ Qzn | kn ≤ Σn ≤ kn + an)

=

( √
n

2an + 1

)M ∫
Qzn

fn(y) dλ(y).

By construction, these are again probability density functions with respect to M -
dimensional Lebesgue measure λ. Moreover, each of these densities is supported on
the collection of sheared cubes in (2.3.11) that intersect S0, and is constant on each
sheared cube Qzn. In particular, for any given point z ∈ RM we have∫

Qzn

gn(y) dλ(y) =
2an + 1√

n

∫
Qzn

gn(y) dµ0(y).

Finally, because an/
√
n→ 0 it is clear that if Z ′′n has density gn, then its weak limit

will coincide with that of Zn, and hence also with that of the vector Xn conditioned
on the event {kn ≤ Σn ≤ kn + an}.

Suppose now that we could prove that

2an + 1√
n

gn(z)→ f(z)∫
f dµ0

for every z ∈ RM . (2.3.12)

Then it would follow from Fatou’s lemma that for every open set A ⊂ RM ,

lim inf
n→∞

∫
A

2an + 1√
n

gn(z) dµ0(z) ≥
∫
A
f(z) dµ0(z)∫
f dµ0

.

By approximating the open set A by unions of sheared cubes contained in A, as in
the proof of Theorem 2.1.4, it is then clear that this would imply that

lim inf
n→∞

∫
A

gn(z) dλ(z) ≥
∫
A
f(z) dµ0(z)∫
f dµ0

.

It therefore only remains to establish (2.3.12).
Since (2.3.12) holds by construction for z /∈ S0, we only need to consider the case

z ∈ S0. So let us fix z ∈ S0, and look at gn(z). By definition, this is just the rescaled
conditional probability that the vector Xn lies in the sheared cube Qzn, given that
kn ≤ Σn ≤ kn+an. In other words, if we define Czn :=

√
nQzn∩ZM and Cz`n := Czn∩S`,

then we have

gn(z) =

( √
n

2an + 1

)M ∑
r∈Czn

P(
√
nXn = r | kn ≤ Σn ≤ kn + an)

=

( √
n

2an + 1

)M an∑
`=0

∑
r∈Cz`n

P(
√
nXn = r | Σn = kn + `)P(Σn = kn + `)

P(kn ≤ Σn ≤ kn + an)
.
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Since Cz`n contains exactly (2an + 1)M−1 points, from this equality we conclude that
to prove (2.3.12), it is sufficient to show that

sup
0≤`≤an

sup
r∈Cz`n

∣∣∣∣(√n)M−1P(
√
nXn = r | Σn = kn + `)− f(z)∫

f dµ0

∣∣∣∣→ 0. (2.3.13)

The proof of (2.3.13) proceeds along the same line as the proof of pointwise con-
vergence in Theorem 2.1.4, based on Lemma 2.3.2. However, there is a catch: because
we are now conditioning on Σn = kn+`, the Xin are no longer centred around xin, but
around x`in. We therefore first write the conditional probabilities in a form analogous
to what we had before, by using that

P
(√
nXn = r

∣∣ Σn = kn + `
)

= P
(√
nX `

n = r + xn − x`n
∣∣ Σn = kn + `

)
.

Writing r` := r + xn − x`n for convenience, we now want to study the ratios

P(
√
nX `

n = r` | Σn = kn + `)

P(
√
nX `

n = 0 | Σn = kn + `)
=
P(
√
nX `

n = r`)

P(
√
nX `

n = 0)
=

M∏
i=1

P(Xin = x`in + r`i )

P(Xin = x`in)

for ` and r satisfying 0 ≤ ` ≤ an and r ∈ Cz`n.
By equation (2.3.9) and Lemma 2.3.4 we have that sup`|x`in− xin| = o(

√
n), from

which it follows that also sup`,r|r` − z
√
n| = o(

√
n), where the suprema are over all

` ∈ {0, . . . , an} and r ∈ Cz`n. Thus, by the first part of Lemma 2.3.2,

sup
0≤`≤an

sup
r∈Cz`n

∣∣∣∣∣P(
√
nX `

n = r` | Σn = kn + `)

P(
√
nX `

n = 0 | Σn = kn + `)
− f(z)

∣∣∣∣∣→ 0,

where we have used that for all terms concerned,
∏M
i=1A

r`i
n = 1 because r` ∈ S0.

Furthermore, from the second part of Lemma 2.3.2 it follows that the functions

z 7→ P(
√
nX `

n = dz√nc | Σn = kn + `)

P(
√
nX `

n = 0 | Σn = kn + `)

are bounded uniformly in n and in all ` ∈ {0, . . . , an} by a µ0-integrable function. In
the same way as in the proof of Theorem 2.1.4, it follows from these facts (with the
addition that we have uniform bounds) that

sup
0≤`≤an

∣∣∣∣(√n)M−1P(
√
nX `

n = 0 | Σn = kn + `)− 1∫
f dµ0

∣∣∣∣→ 0.

From this we conclude that (2.3.13) does hold, which completes the proof of Theo-
rem 2.1.5.

2.3.3 Proof of Theorem 2.1.6

Proof of Theorem 2.1.6. Suppose that (kn−E(Σn))/
√
n→ K for someK ∈ [−∞,∞).

Let X be a random vector having a multivariate normal distribution with density
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h/
∫
h dλ with respect to λ. By standard arguments, X p

n converges weakly to X .
Therefore, for a rectangle A ⊂ RM we have

P(X p
n ∈ A,Σn ≥ kn) = P(X p

n ∈ A ∩H kn−E(Σn)√
n

)→ P(X ∈ A ∩HK),

since A ∩HK+ε is a λ-continuity set for all ε ∈ R. Taking A = RM gives

P(Σn ≥ kn)→ P(X ∈ HK).

Hence, for all rectangles A ⊂ RM

P(X p
n ∈ A | Σn ≥ kn)→ P(X ∈ A ∩HK)

P(X ∈ HK)
.

2.3.4 Law of large numbers

Finally, we prove a law of large numbers, which we will need in Section 2.4. Let X̃in

denote a random variable with the conditional law of Xin, conditioned on the event
{Σn ≥ kn}. If (kn − E(Σn))/

√
n → K for some K ∈ [−∞,∞], then an immediate

consequence of Theorems 2.1.5 and 2.1.6 is that X̃in/n converges in probability to
either piαi or ciαi. The following theorem shows that such a law of large numbers
holds for a general sequence kn such that kn/n→ α.

Theorem 2.3.7. For i ∈ {1, . . . ,M}, the random variable X̃in/n converges in prob-

ability to piαi if α ≤∑M
i=1 piαi, or to ciαi if α ≥∑M

i=1 piαi.

Proof. If α 6= ∑M
i=1 piαi, then (kn − E(Σn))/

√
n goes to −∞ or ∞ as n → ∞, and

the result immediately follows from Theorem 2.1.5 and Theorem 2.1.6.
Now suppose that α =

∑M
i=1 piαi. Then ci = pi for all i ∈ {1, . . . ,M}. Recall

that in general the ci and A are determined by the equations

ci =
pi

pi +A(1− pi)
and

M∑
i=1

piαi
pi +A(1− pi)

= α.

The constant A is continuous as a function of α, hence ci = ci[α] is also continuous as

a function of α. Therefore, if α =
∑M
i=1 piαi, then for each ε > 0 we can choose δ > 0

such that ci[α+ δ]αi ≤ piαi + 1
2ε. By Corollary 2.2.3 we have, for large enough n,

P(Xin ≥ (piαi + ε)n | Σn ≥ kn)

≤ P(Xin ≥ (piαi + ε)n | Σn ≥ (α+ δ)n)

≤ P(Xin ≥ (ci[α+ δ]αi + 1
2ε)n | Σn ≥ (α+ δ)n),

which tends to 0 as n → ∞ by Theorem 2.1.5. Similarly, using Corollary 2.2.3 and
Theorem 2.1.6 instead of Theorem 2.1.5, we obtain

P(Xin ≤ (piαi − ε)n | Σn ≥ kn)→ 0.

We conclude that X̃in/n converges in probability to piαi = ciαi.
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2.4 Asymptotic stochastic domination

2.4.1 Proof of Theorem 2.1.8

Consider the general framework for vectors Xn and Y n of Section 2.1.2 in the setting
of Section 2.1.4. We will split the proof of Theorem 2.1.8 into four lemmas. In the
statements of these lemmas, we will need the constant α̂, which is defined as the limit
as n→∞ of k̂n/n:

k̂n =

M∑
i=1

pimin

pi + βmax(1− pi)
, hence α̂ =

M∑
i=1

piαi
pi + βmax(1− pi)

.

Let us first look at the definition of α̂ in more detail. In Section 2.1.4, we informally
introduced the sequence k̂n as a critical sequence such that if kn is around k̂n, then
there exists a block i such that the number of successes X̃in of the vector X̃n in
block i is roughly the same as Ỹin. We will now make this precise. Recall that the ci
and the constant A are determined by

ci =
pi

pi +A(1− pi)
and

M∑
i=1

piαi
pi +A(1− pi)

= α.

Furthermore, note that
pi

pi + βi(1− pi)
= qi,

and recall that we defined I = {i ∈ {1, . . . ,M} : βi = βmax}. The ordering of α and α̂
gives information about the ordering of the ci and qi. This is stated in the following
remark, which follows from the equations above.

Remark 2.4.1. We have the following:

(i) If α < α̂, then A > βmax and ci < qi for all i ∈ {1, . . . ,M}.

(ii) If α = α̂, then A = βmax and ci = qi for i ∈ I, while ci < qi for i /∈ I.

(iii) If α > α̂, then A < βmax and ci > qi for some i ∈ {1, . . . ,M}.

(iv)
∑M
i=1 piαi ≤ α̂ ≤ ∑M

i=1 qiαi, with α̂ =
∑M
i=1 piαi if and only if βmax = 1, and

α̂ =
∑M
i=1 qiαi if and only if all βi (i ∈ {1, . . . ,M}) are equal.

Our law of large numbers, Theorem 2.3.7, states that X̃in/n converges in prob-

ability to piαi if α ≤ ∑M
i=1 piαi, and to ciαi if α ≥ ∑M

i=1 piαi. This law of large

numbers applies analogously to the vector Ỹ n. If we define d1, . . . , dM as the unique
solution of the system

1− di
di

qi
1− qi

=
1− dj
dj

qj
1− qj

∀i, j ∈ {1, . . . ,M},∑M
i=1 diαi = α,
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then Ỹin/n converges in probability to qiαi if α ≤ ∑M
i=1 qiαi, and to diαi if α ≥∑M

i=1 qiαi. These laws of large numbers and the observations in Remark 2.4.1 will
play a crucial role in the proofs in this section.

Now we define one-dimensional (possibly degenerate) distribution functions FK : R
→ [0, 1] for K ∈ [−∞,∞], which will come up in the proofs as the distribution
functions of the limit of a certain function of the vectors X̃n. Recall from Section 2.1.3
the definitions (2.1.5), (2.1.6), (2.1.7) and (2.1.8) of the measure ν0, the functions f
and h and the half-space HK . Write u = (u1, . . . , uM ). Then

FK(z) =



∫
HK∩{

∑
i∈I ui≤z}

h(u) dλ(u)∫
HK

h dλ
if K <∞, α =

∑M
i=1 piαi,∫

{∑i∈I ui≤z−zK}
f(u) dν0(u)∫

f dν0
if K <∞, α >

∑M
i=1 piαi,

0 if K =∞,

(2.4.1)

where

zK =

∑
i∈I ci(1− ci)αi∑M
i=1 ci(1− ci)αi

K. (2.4.2)

The following lemmas, together with Proposition 2.1.3, imply Theorem 2.1.8.

Lemma 2.4.2. If α < α̂, then supP(X̃n ≤ Ỹ n)→ 1.

Lemma 2.4.3. Suppose that α > α̂ and βi 6= βj for some i, j ∈ {1, . . . ,M}. Then

supP(X̃n ≤ Ỹ n)→ 0.

Lemma 2.4.4. Suppose that α = α̂ and βi 6= βj for some i, j ∈ {1, . . . ,M}. Suppose

furthermore that (kn − k̂n)/
√
n → K for some K ∈ [−∞,∞]. Then supP(X̃n ≤

Ỹ n)→ infz∈R FK(z)− Φ(z/a) + 1.

Lemma 2.4.5. If α = α̂ and βi 6= βj for some i, j ∈ {1, . . . ,M}, then

inf
z∈R

FK(z)− Φ(z/a) + 1 =


1 if K = −∞,
PK if K ∈ R, where 0 < PK < 1,

0 if K =∞.

The constant a in Lemma 2.4.4 is the constant defined in (2.1.9a). The infimum
in Lemma 2.4.4 can actually be computed, as Lemma 2.4.5 states, and attains the
values stated in Theorem 2.1.8, with PK as defined in (2.1.10).

We will prove Theorem 2.1.8 by proving each of the Lemmas 2.4.2–2.4.5 in turn.
The idea behind the proof of Lemma 2.4.2 is as follows. If we do not condition at all,
then Xn � Y n for every n ≥ 1. If α <

∑M
i=1 piαi, then the effect of conditioning

vanishes in the limit and supP(X̃n ≤ Ỹ n) → 1 as n → ∞. If
∑M
i=1 piαi ≤ α <

α̂, then ci < qi for all i ∈ {1, . . . ,M}. Hence, for large n we have that X̃in is
significantly smaller than Ỹin for all i ∈ {1, . . . ,M}, from which it will again follow
that supP(X̃n ≤ Ỹ n)→ 1.
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Proof of Lemma 2.4.2. First, suppose that α <
∑M
i=1 piαi. Let Xn and Y n be de-

fined on a common probability space (Ω,F , P ) such that Xn ≤ Y n on all of Ω.

Pick ω1 ∈ Ω according to the measure P ( · | ∑M
i=1Xin ≥ kn) and pick ω2 ∈ Ω in-

dependently according to the measure P ( · | ∑M
i=1 Yin ≥ kn). If ω2 is in the event{∑M

i=1Xin ≥ kn
}
∈ F , set Ỹ n(ω1, ω2) := Y n(ω1), otherwise set Ỹ n(ω1, ω2) :=

Y n(ω2). Set X̃n(ω1, ω2) := Xn(ω1) regardless of the value of ω2. It is easy to see
that this defines a coupling of X̃n and Ỹ n on the space (Ω × Ω,F × F) with the
correct marginals for X̃n and Ỹ n. Moreover, in this coupling we have X̃n ≤ Ỹ n at
least if ω2 ∈

{∑M
i=1Xin ≥ kn

}
. Hence

supP(X̃n ≤ Ỹ n) ≥ P(
∑M
i=1Xin ≥ kn)

P(
∑M
i=1 Yin ≥ kn)

,

which tends to 1 as n→∞ (e.g. by Chebyshev’s inequality).

Secondly, suppose that
∑M
i=1 piαi ≤ α < α̂. By Remark 2.4.1(i), ci < qi for all

i ∈ {1, . . . ,M}. For each coupling of X̃n and Ỹ n we have

P(X̃n ≤ Ỹ n) ≥ P(X̃in ≤ (ci + qi)αin/2 ≤ Ỹin ∀i ∈ {1, . . . ,M}),

which tends to 1 as n→∞ by Theorem 2.3.7 and Remark 2.4.1(iv).

The next lemma, Lemma 2.4.3, treats the case α > α̂. In this case, we have that
for large n, X̃in is significantly larger than Ỹin for some i ∈ {1, . . . ,M}, from which
it follows that supP(X̃n ≤ Ỹ n)→ 0.

Proof of Lemma 2.4.3. First, suppose that α̂ < α <
∑M
i=1 qiαi. Then ci > qi for some

i ∈ {1, . . . ,M} by Remark 2.4.1(iii). Hence, by Theorem 2.3.7 and Remark 2.4.1(iv),

P(X̃in ≥ (ci + qi)αin/2)→ 1,

P(Ỹin ≥ (ci + qi)αin/2)→ 0.

It follows that P(X̃n ≤ Ỹ n) tends to 0 uniformly over all couplings.

Next, suppose that α ≥∑M
i=1 qiαi and βi 6= βj for some i, j ∈ {1, . . . ,M}. Then

there exists i ∈ {1, . . . ,M} such that ci 6= di, since

1− di
di

dj
1− dj

βj =
1− qi
qi

pj
1− pj

= βi
1− ci
ci

cj
1− cj

.

In fact, we must have ci > di for some i ∈ {1, . . . ,M}, because
∑M
i=1 ciαi =∑M

i=1 diαi. By Theorem 2.3.7, it follows that

P(X̃in ≥ (ci + di)αin/2)→ 1,

P(Ỹin ≥ (ci + di)αin/2)→ 0.

Again, P(X̃n ≤ Ỹ n) tends to 0 uniformly over all couplings.
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We now turn to the proof of Lemma 2.4.4. Under the assumptions of this lemma,
ci = qi for i ∈ I and ci < qi for i /∈ I. The proof proceeds in four steps. In
step 1, we show that the blocks i /∈ I do not influence the asymptotic behavior of
supP(X̃n ≤ Ỹ n), because for these blocks, X̃in is significantly smaller than Ỹin
for large n. In step 2, we show that the parts of the vectors X̃n and Ỹ n that
correspond to the blocks i ∈ I are stochastically ordered, if and only if the total
numbers of successes in these parts of the vectors are stochastically ordered. At
this stage, the original problem of stochastic ordering of random vectors has been
reduced to a problem of stochastic ordering of random variables. In step 3, we use
our central limit theorems to deduce the asymptotic behavior of the total numbers of
successes in the blocks i ∈ I. In step 4, we apply the following lemma, which follows
from [45, Proposition 1], to these total numbers of successes:

Lemma 2.4.6. Let X and Y be random variables with distribution functions F and G
respectively. Then we have

supP(X ≤ Y ) = inf
z∈R

F (z)−G(z) + 1,

where the supremum is taken over all possible couplings of X and Y .

Proof of Lemma 2.4.4. Write mIn :=
∑
i∈I min. Let XIn and X̃In denote the mIn-

dimensional subvectors of Xn and X̃n, respectively, consisting of the components
that belong to the blocks i ∈ I. Define Y In and Ỹ In analogously.

Step 1. Note that for each coupling of X̃n and Ỹ n,

P(X̃n ≤ Ỹ n) ≥ P(X̃In ≤ Ỹ In, X̃in ≤ (ci + qi)αin/2 ≤ Ỹin ∀i /∈ I)

≥ P(X̃In ≤ Ỹ In)−∑
i/∈I

{
P
(
X̃in >

ci + qi
2

αin
)

+ P
(
Ỹin <

ci + qi
2

αin
)}
. (2.4.3)

By Remark 2.4.1(ii), ci < qi for i /∈ I. Hence, it follows from Remark 2.4.1(iv)
and Theorem 2.3.7 that the sum in (2.4.3) tends to 0 as n → ∞, uniformly over all
couplings. Since clearly supP(X̃n ≤ Ỹ n) ≤ supP(X̃In ≤ Ỹ In),∣∣∣supP(X̃n ≤ Ỹ n)− supP(X̃In ≤ Ỹ In)

∣∣∣→ 0,

where the suprema are taken over all possible couplings of (X̃n, Ỹ n) and (X̃In, Ỹ In),
respectively.

Step 2. The βi for i ∈ I are all equal. Hence, by Proposition 2.1.2 and
Lemma 2.2.2 we have for m ∈ {0, 1, . . . ,mIn} and ` ∈ {0, 1, . . . ,mIn −m}

L(XIn|
∑
i∈I Xin = m) � L(Y In|

∑
i∈I Yin = m+ `). (2.4.4)

Now let B be any collection of vectors of length mIn with exactly m components
equal to 1 and mIn −m components equal to 0. Then

P(X̃In ∈ B) = P(XIn ∈ B |
∑M
i=1Xin ≥ kn)

=
P(XIn ∈ B)P(

∑
i/∈I Xin ≥ kn −m)

P(
∑M
i=1Xin ≥ kn)

.
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Taking C to be the collection of all vectors in {0, 1}mIn with exactly m components
equal to 1, we obtain

P(X̃In ∈ B |
∑
i∈IX̃in = m) =

P(X̃In ∈ B)

P(X̃In ∈ C)
= P(XIn ∈ B |

∑
i∈IXin = m),

and likewise for Y In and Ỹ In. Hence, (2.4.4) is equivalent to

L(X̃In|
∑
i∈I X̃in = m) � L(Ỹ In|

∑
i∈I Ỹin = m+ `).

With a similar argument as in the proof of Proposition 2.1.3, it follows that

supP(X̃In ≤ Ỹ In) = supP(
∑
i∈I X̃in ≤

∑
i∈I Ỹin).

Step 3. First observe that by Remark 2.4.1(iv), α <
∑M
i=1 qiαi. Hence, by The-

orem 2.1.6 (note that (kn − E(
∑M
i=1 Yin))/

√
n → −∞) and the continuous mapping

theorem,

P(
∑
i∈I(Ỹin − qimin)/

√
n ≤ z)→ Φ(z/a) for every z ∈ R. (2.4.5)

Next observe that by Remark 2.4.1(ii), ci = qi for i ∈ I and A = βmax, from which

it follows that k̂n =
∑M
i=1 cimin. Hence, Corollary 2.3.5 gives∑

i∈I(cin − qi)min/
√
n→ zK , (2.4.6)

with zK as defined in (2.4.2). In the case α >
∑M
i=1 piαi, Theorem 2.1.5, (2.4.6) and

the continuous mapping theorem now immediately imply

P(
∑
i∈I(X̃in − qimin)/

√
n ≤ z)→ FK(z) for every z ∈ R. (2.4.7)

Note that if K = ±∞, FK is degenerate in this case: we have FK(z) = 1 for all z ∈ R
if K = −∞ and FK(z) = 0 for all z ∈ R if K =∞.

Now consider the case α =
∑M
i=1 piαi. By Remark 2.4.1(iv), in this case we

have βmax = 1, which implies that k̂n =
∑M
i=1 pimin = E(Σn) and pi = qi for all

i ∈ {1, . . . ,M}. Hence, if K =∞, then (2.4.6) and Theorem 2.1.5 again imply (2.4.7)
with FK(z) = 0 everywhere. If K ∈ [−∞,∞), then we obtain (2.4.7) directly from
Theorem 2.1.6; FK is non-degenerate in this case (also for K = −∞).

Step 4. The distribution functions on the left-hand sides of (2.4.5) and (2.4.7)
are non-decreasing and bounded between 0 and 1, hence they converge uniformly on
compact sets. It follows by Lemma 2.4.6 that

supP(
∑
i∈I X̃in ≤

∑
i∈I Ỹin)→ infz∈R FK(z)− Φ(z/a) + 1.

Finally, we turn to the proof of Lemma 2.4.5. The key to computing the infimum
of FK(z)−Φ(z/a)+1 is to first express the distribution function FK , defined in (2.4.1),
in a simpler form.

Proof of Lemma 2.4.5. In the case α >
∑M
i=1 piαi and K = −∞, FK is 1 everywhere,

hence infz∈R FK(z)−Φ(z/a) + 1 = 1. In the case K =∞, FK is 0 everywhere, hence
infz∈R FK(z)− Φ(z/a) + 1 = 0. We will now study the remaining cases.
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Consider the case α = α̂ =
∑M
i=1 piαi and K ∈ [−∞,∞). Let Z = (Z1, . . . , ZM )

be a random vector which has the multivariate normal distribution with density
h/
∫
h dλ. By Remark 2.4.1(iv) we have βmax = 1. Note that therefore, 1

a

∑
i∈I Zi,

1
b

∑
i/∈I Zi and 1

c

∑M
i=1 Zi, with a, b and c as defined in (2.1.9), all have the standard

normal distribution. Moreover,
∑
i∈I Zi and

∑
i/∈I Zi are independent.

For K = −∞, it follows that FK(z) = Φ(z/a), hence infz∈R FK(z) − Φ(z/a) +

1 = 1. For K ∈ R, observe that Z ∈ HK is equivalent with 1
c

∑M
i=1 Zi ≥ K/c.

Likewise, Z ∈ HK ∩{u ∈ RM :
∑
i∈I ui ≤ z} is equivalent with 1

a

∑
i∈I Zi ≤ z/a and

1
b

∑
i/∈I Zi ≥ (K −∑i∈I Zi)/b. It follows that

FK(z) =

∫
h dλ∫

HK
h dλ

∫
HK∩{

∑
i∈I ui≤z}

h(u) dλ(u)∫
h dλ

=
1

1− Φ(K/c)

∫ z/a

−∞

∫ ∞
K−au
b

e−u
2/2

√
2π

e−v
2/2

√
2π

dv du

=

∫ z/a

−∞

e−u
2/2

√
2π

1− Φ
(
K−au
b

)
1− Φ

(
K
c

) du,

hence

FK(z)− Φ(z/a) =

∫ z/a

−∞

e−u
2/2

√
2π

Φ
(
K
c

)
− Φ

(
K−au
b

)
1− Φ

(
K
c

) du. (2.4.8)

Clearly, the derivative of this expression with respect to z is 0 if and only if (K−z)/b =
K/c, that is, z = zmin = K − bK/c. Plugging this value for z into (2.4.8) shows that
infz∈R FK(z)− Φ(z/a) + 1 = PK , with PK as defined in (2.1.10). Moreover, PK > 0
because FK(zmin) > 0, and PK < 1 because the integrand in (2.4.8) is negative for
u < zmin/a.

Finally, consider the case α >
∑M
i=1 piαi and K ∈ R. This time, let Z =

(Z1, . . . , ZM ) be a random vector which has the singular multivariate normal dis-
tribution with density f/

∫
f dν0 with respect to ν0. Then a little computation shows

that (Z1, . . . , ZM−1) has a multivariate normal distribution with mean 0 and a co-
variance matrix Σ given by

Σii =
σ2
i

∑M
k=1,k 6=i σ

2
k∑M

k=1 σ
2
k

for i ∈ {1, . . . ,M − 1},

Σij =
−σ2

i σ
2
j∑M

k=1 σ
2
k

for i, j ∈ {1, . . . ,M − 1} with i 6= j,

where σ2
i = ci(1 − ci)αi for i ∈ {1, . . . ,M}. Similarly, every subvector of Z of

dimension less than M has a multivariate normal distribution.
By the definition (2.4.1) of FK , zK +

∑
i∈I Zi has distribution function FK . Since

βi 6= βj for some i, j ∈ {1, . . . ,M}, we have |I| ≤M − 1. It follows that
∑
i∈I Zi has

a normal distribution with mean 0 and variance∑
i∈I

σ2
i

∑M
k=1,k 6=i σ

2
k∑M

k=1 σ
2
k

+
∑
i∈I

∑
j∈I\{i}

−σ2
i σ

2
j∑M

k=1 σ
2
k

=
(
∑
i∈I σ

2
i )(
∑
i/∈I σ

2
i )∑M

i=1 σ
2
i

. (2.4.9)
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By Remark 2.4.1(ii), A = βmax and hence for i ∈ {1, . . . ,M},

σ2
i = ci(1− ci)αi =

βmaxpi(1− pi)αi
(pi + βmax(1− pi))2

.

It follows that the variance (2.4.9) is equal to a2b2/c2, with a, b, and c as defined
in (2.1.9). Furthermore, zK = a2K/c2. We conclude that FK is the distribution
function of a normally distributed random variable with mean a2K/c2 and variance
a2b2/c2, so that FK(z) = Φ

(
c
ab (z − a2K/c2)

)
. Since a2b2/c2 < a2, we see that

FK(z) < Φ(z/a) for small enough z. Hence FK(z)−Φ(z/a) attains a minimum value
which is strictly smaller than 0. This minimum is strictly larger than −1 because
FK(z) > 0 for all z ∈ R.

To find the minimum, we compute the derivative of FK(z)−Φ(z/a) with respect
to z. It is not difficult to verify that the minimum is attained for

z = zmin = K − b

c

√
K2 + c2 log(c2/b2),

from which it follows that infz∈R FK(z) − Φ(z/a) + 1 = PK , with PK as defined
in (2.1.10). From the remarks above we know that 0 < PK < 1.

2.4.2 Conditioning on exactly kn successes

For the sake of completeness, we finally treat the case of conditioning on the total
number of successes being equal to kn. The situation is not very interesting here.

Theorem 2.4.7. Let X̂n be a random vector having the conditional distribution
of Xn, conditioned on the event {Σn = kn}. Define Ŷ n similarly. If all βi (i ∈
{1, . . . ,M}) are equal, then X̂n and Ŷ n have the same distribution for every n ≥ 1.

Otherwise, supP(X̂n = Ŷ n)→ 0 as n→∞.

Proof. If all βi (i ∈ {1, . . . ,M}) are equal, then by Proposition 2.1.2 we have that

X̂n and Ŷ n have the same distribution for every n ≥ 1. If βi 6= βj for some i, j ∈
{1, . . . ,M}, then it can be shown that supP(X̂n ≤ Ŷ n)→ 0 as n→∞, by a similar
argument as in the proof of Lemma 2.4.3; instead of Theorem 2.3.7 use Lemma 2.3.1.
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Chapter 3

On central limit theorems in
the random connection model

This chapter is based on the paper [53] by Van de Brug and Meester.

3.1 Introduction

Let (X,λ, g) denote a Poisson random connection model, where X is the underlying
Poisson point process on Rd with density λ > 0, and where g is a connection function
which we assume to be a non-increasing and which satisfies 0 <

∫
Rd
g(|x|) dx < ∞.

In words, this amounts to saying that any two points x and y of X are connected
with probability g(|x − y|), independently of all other pairs, independently of X.
The random connection model plays an important role in many areas, for instance
in telecommunications and epidemiology. In telecommunications, the points of the
point process can represent base stations, and the connection function then tells us
that two base stations at locations x and y respectively, can communicate to each
other with probability g(|x − y|). In epidemiology, the connection function can for
instance represent the probability that an infected herd at location x infects another
herd at location y.

Let K be a bounded Borel subset of Rd with non-empty interior and boundary
of Lebesgue measure zero. Consider a sequence of positive real numbers λn with
λn/n

d → λ, let Xn be a Poisson process on Rd with density λn and let gn be the
connection function defined by gn(x) = g(nx). Consider the sequence of Poisson
random connection models (Xn, λn, gn) on Rd. Let In(g) be the number of isolated
vertices of (Xn, λn, gn) in K. Roy and Sarkar [44] claim to prove the following result.

Theorem 3.1.1.
In(g)− E In(g)√

VarIn(g)
 N(0, 1), n→∞, (3.1.1)

where  denotes convergence in distribution.

Although the statement of this result is correct, the proof in [44] is not. In this
chapter, we explain what went wrong in their proof, and how this can be corrected. In
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addition, we prove an extension to larger components in case the connection function
has bounded support.

3.2 Truncation and scaling

The central limit theorem (3.1.1) is relatively easy to show when g has bounded
support, see [44]. Hence, the strategy adopted in [44] is to truncate the relevant
connection functions, and let the truncation go to infinity. This means that there are
two operations involved: scaling and truncation. The root of the problem lies in the
fact that these two operations do not commute.

Following [44] we define forR > 0 and n ∈ N connection functions gR, g
R, gn,R, g

R
n :

[0,∞)→ [0, 1] by

gR(x) = 1{x≤R} g(x), gR(x) = 1{x>R} g(x),

gn,R(x) = 1{x≤R} g(nx), gRn (x) = 1{x>R} g(nx),

where the indicator function 1x≤R is by definition equal to 1 when x ≤ R and equal to
0 when x > R, and similarly for the other indicator functions. Note that the notation
gR can formally not be used to denote 1{·≤R} g(·), since gn has already been defined
as g(n·). Nevertheless we will adopt this notation, because we think that this will
not cause any confusion. Henceforth gR will always denote 1{·≤R} g(·) and gn will
always denote g(n·). Let LR(g) be the number of isolated vertices of (X,λ, gR) in
K that are not isolated in (X,λ, g). Let Jn,R(g) be the number of isolated vertices
of (Xn, λn, gn,R) in K and let Ln,R(g) = Jn,R(g) − In(g) be the number of isolated
vertices of (Xn, λn, gn,R) in K that are not isolated in (Xn, λn, gn).

The authors of [44] claim the following (without proof).

Statement 3.2.1. If (3.1.1) is true when the connection function g has bounded
support, then it is the case that

Jn,R(g)− E Jn,R(g)√
VarJn,R(g)

 N(0, 1), n→∞, (3.2.1)

for any connection function g.

They then proceed, via a number of moment estimates involving Jn,R(g) and Ln,R(g),
to show that the truth of (3.2.1) for any connection function g, implies the full central
limit theorem in (3.1.1).

One problem with their argument is that Statement 3.2.1 is not true, as it would
imply that we would be able to write Jn,R(g) = In(h) for some connection function
h with bounded support. This would mean that gn,R can be seen as a scaling of h,
that is,

1{x≤R} g(nx) = h(nx),

but this leads to h(x) = 1{x≤nR} g(x), which clearly does not make any sense in
general.

It seems then that the authors of [44] interchange truncation and scaling, but these
two operations do not commute. This mixing up becomes already apparent when we
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look at their Lemma 5 which states (without proof) that

lim
n→∞

(λn`(K))−1ELn,R(g) = p(λ, gR)(1− p(λ, gR)); (3.2.2)

lim
n→∞

(λn`(K))−1VarLn,R(g) = p(λ, gR)(1− p(λ, gR)) + λ

∫
Rd

(1− g(|x|))[
p(λ, gR)2pgR,gRλ (x, 0)− 2p(λ, gR)2p(λ, gR)pgR,gλ (x, 0)+

p(λ, g)2pg,gλ (x, 0)
]
− p(λ, gR)2(1− p(λ, gR))2 dx; (3.2.3)

where ` denotes Lebesgue measure on Rd and

p(µ, h) = e−µ
∫
Rd
h(|y|) dy and ph1,h2

µ (x1, x2) = eµ
∫
Rd
h1(|y−x1|)h2(|y−x2|) dy.

However, the following proposition shows that (3.2.2) and (3.2.3) are not correct; see
the forthcoming Lemma 3.3.3 for a corresponding correct (and useful) statement.

Proposition 3.2.2. For R > sup{|x1 − x2| : x1, x2 ∈ K} we have

lim
n→∞

(λn`(K))−1ELn,R(g) = 0; (3.2.4)

lim
n→∞

(λn`(K))−1VarLn,R(g) = 0. (3.2.5)

Proof. For R > 0 and n ∈ N define knR, k
nR : [0,∞)→ [0, 1] by

knR(x) = 1{x≤nR} g(x), knR(x) = 1{x>nR} g(x), x ∈ [0,∞).

We have as n→∞,

p(λn, gn,R) = p(λn/n
d, knR) → p(λ, g);

p(λn, g
R
n ) = p(λn/n

d, knR) → 1.

According to [44] Lemma 4 we have for R > sup{|x1 − x2| : x1, x2 ∈ K},

ELR(g) = λ`(K)p(λ, gR)(1− p(λ, gR)), (3.2.6)

and therefore,

(λn`(K))−1ELn,R(g) = p(λn, gn,R)(1− p(λn, gRn ))→ 0, n→∞,

which proves (3.2.4).
To prove (3.2.5), we use Lemma 4 in [44] which says that for R > sup{|x1 − x2| :

x1, x2 ∈ K}, we have

VarLR(g) = λ`(K)p(λ, gR)(1− p(λ, gR)) + λ2

∫
K

∫
K

(1− g(|x1 − x2|))[
p(λ, gR)2pgR,gRλ (x1, x2)− 2p(λ, gR)2p(λ, gR)pgR,gλ (x1, x2) +

p(λ, g)2pg,gλ (x1, x2)
]
− p(λ, gR)2(1− p(λ, gR))2 dx2 dx1. (3.2.7)
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We use (3.2.7) with λ = λn and g = gn. Note that as n→∞

p
gn,R,gn,R
λn

(x/n, 0) = pknR,knR
λn/nd

(x, 0) → pg,gλ (x, 0);

p
gn,R,gn
λn

(x/n, 0) = pknR,g
λn/nd

(x, 0) → pg,gλ (x, 0);

pgn,gnλn
(x/n, 0) = pg,g

λn/nd
(x, 0) → pg,gλ (x, 0).

We have

λn
`(K)

∫
K

∫
K

(1− gn(|x1 − x2|))
[
p(λn, gn,R)2p

gn,R,gn,R
λn

(x1, x2)−

2p(λn, gn,R)2p(λn, g
R
n )p

gn,R,gn
λn

(x1, x2) + p(λn, gn)2pgn,gnλn
(x1, x2)

]
−

p(λn, gn,R)2(1− p(λn, gRn ))2 dx2 dx1

=
λn

nd`(K)

∫
K

∫
n(K−x1)

(1− g(|x2|))
[
p(λn/n

d, knR)2pknR,knR
λn/nd

(0, x2)−

2p(λn/n
d, knR)2p(λn/n

d, knR)pknR,g
λn/nd

(0, x2) + p(λn/n
d, g)2pg,g

λn/nd
(0, x2)

]
−

p(λn/n
d, knR)2(1− p(λn/nd, knR))2 dx2 dx1.

By Lemma 3.3.1 below with x = −x2 we can apply the dominated convergence
theorem. Combining the result with (3.2.4) yields (3.2.5).

In what follows, we proceed along the way that we believe the authors of [44] had
in mind.

For this, we introduce for R > 0 and n ∈ N connection functions gR,n, g
R,n :

[0,∞)→ [0, 1] as follows:

gR,n(x) = 1{x≤R/n} g(nx), gR,n(x) = 1{x>R/n} g(nx).

Note the difference between gR,n and gn,R and between gR,n and gRn . Let JR,n(g) be
the number of isolated vertices of (Xn, λn, gR,n) inK and let LR,n(g) = JR,n(g)−In(g)
be the number of isolated vertices of (Xn, λn, gR,n) in K that are not isolated in
(Xn, λn, gn). Note that the notations gR,n, JR,n(g) and LR,n(g) can formally not be
used here, since gn,R, Jn,R(g) and Ln,R(g) have already been defined. Nevertheless
we will adopt these notations, because henceforth we will use the function gn,R and
the random variables Jn,R(g) and Ln,R(g) no more. We now claim that the following
is true (compare the incorrect Statement 3.2.1 above)

Statement 3.2.3. If (3.1.1) is true when the connection function g has bounded
support, then it is the case that

JR,n(g)− E JR,n(g)√
VarJR,n(g)

 N(0, 1), n→∞, (3.2.8)

for any connection function g.

To see this, observe that

JR,n(g) = In(gR),
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as can be seen by direct computation. Since gR has bounded support, Statement
3.2.3 follows. The moral of this is, that we should base the proof on JR,n(g) and
LR,n(g) instead of Jn,R(g) and Ln,R(g). In the next section we show that the proof
idea of [44] can still be carried out, although the computations involved are a little
more complicated now.

3.3 Proof of Theorem 3.1.1

We start with a technical lemma, needed for applications of dominated convergence.

Lemma 3.3.1. There exists N such that for R > 0, n ≥ N and x ∈ Rd∣∣∣(1− g(|x|))
[
p(λn/n

d, gR)2pgR,gR
λn/nd

(x, 0)− 2p(λn/n
d, gR)2p(λn/n

d, gR)pgR,g
λn/nd

(x, 0)+

p(λn/n
d, g)2pg,g

λn/nd
(x, 0)

]
− p(λn/nd, gR)2(1− p(λn/nd, gR))2

∣∣∣ ≤ Cg(|x|/2), (3.3.1)

where C is a constant not depending on x, n or R.

Proof. Since p(λn/n
d, gR)p(λn/n

d, gR) = p(λn/n
d, g), the expression between the

absolute value signs in (3.3.1) is equal to

− g(|x|)
[
p(λn/n

d, gR)2pgR,gR
λn/nd

(x, 0)− 2p(λn/n
d, gR)p(λn/n

d, g)pgR,g
λn/nd

(x, 0)+

p(λn/n
d, g)2pg,g

λn/nd
(x, 0)

]
+ p(λn/n

d, gR)2(pgR,gR
λn/nd

(x, 0)− 1)−

2p(λn/n
d, gR)p(λn/n

d, g)(pgR,g
λn/nd

(x, 0)− 1) + p(λn/n
d, g)2(pg,g

λn/nd
(x, 0)− 1). (3.3.2)

Let N be such that 3
4λ ≤ λn/nd ≤ 3

2λ, n ≥ N . Then since∫
Rd
gR(|y|) + g(|y|) dy ≥ 2

∫
Rd
gR(|y|) dy ≥ 2

∫
Rd
gR(|y|)g(|y + x|) dy,

we have for n ≥ N

p(λn/n
d, gR)p(λn/n

d, g)pgR,g
λn/nd

(x, 0)

≤ e− 3
4λ

∫
Rd
gR(|y|)+g(|y|) dy+ 3

2λ
∫
Rd
gR(|y−x|)g(|y|) dy ≤ 1. (3.3.3)

Also,

p(λn/n
d, gR)2pgR,gR

λn/nd
(x, 0) ≤ 1, p(λn/n

d, g)2pg,g
λn/nd

(x, 0) ≤ 1,

which follows from (3.3.3) by taking g = gR or letting R→∞ respectively. Hence for
n ≥ N the absolute value of (3.3.2) is bounded by

4g(|x|) + 4(pg,g2λ (x, 0)− 1). (3.3.4)

To give an upper bound for the second term in this expression, note that for
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y ∈ Rd either |y| ≥ |x|/2 or |y − x| ≥ |x|/2, so∫
Rd
g(|y − x|)g(|y|) dy

≤
∫
|y|<|x|/2

g(|y − x|)g(|y|) dy +

∫
|y|≥|x|/2

g(|y − x|)g(|y|) dy

≤ g(|x|/2)

∫
|y|<|x|/2

g(|y|) dy + g(|x|/2)

∫
|y|≥|x|/2

g(|y − x|) dy

≤ 2g(|x|/2)

∫
Rd
g(|y|) dy.

Choose M such that 4λg(M/2)
∫
Rd
g(|y|) dy ≤ 1. Then since et ≤ 1 + et, t ≤ 1, we

have for |x| ≥M

e4λg(|x|/2)
∫
Rd
g(|y|) dy ≤ 1 + 4eλg(|x|/2)

∫
Rd
g(|y|) dy.

For |x| < M we have

e4λg(|x|/2)
∫
Rd
g(|y|) dy ≤ e4λ

∫
Rd
g(|y|) dy ≤ 1 + g(|x|/2)g(M/2)−1[e4λ

∫
Rd
g(|y|) dy − 1].

Combining the above inequalities yields

pg,g2λ (x, 0)− 1 ≤ Cg(|x|/2), (3.3.5)

where C is a constant not depending on x, n or R. We conclude that (3.3.4) is
bounded by 4(1 + C)g(|x|/2).

Lemma 3.3.2.

ELR,n(g) = λn`(K)p(λn, gR,n)(1− p(λn, gR,n)); (3.3.6)

VarLR,n(g) = λn`(K)p(λn, gR,n)(1− p(λn, gR,n)) + λ2
n

∫
K

∫
K

(1− gn(|x1 − x2|))[
p(λn, gR,n)2p

gR,n,gR,n
λn

(x1, x2)− 2p(λn, gR,n)2p(λn, g
R,n)p

gR,n,gn
λn

(x1, x2)+

p(λn, gn)2pgn,gnλn
(x1, x2)

]
− p(λn, gR,n)2(1− p(λn, gR,n))2 dx2 dx1+

λ2
np(λn, gR,n)2

∫
K

∫
K

gR,n(|x1 − x2|)pgR,n,gR,nλn
(x1, x2) dx2 dx1. (3.3.7)

Proof. The first statement (3.3.6) is proved as in [44] Lemma 4.
For a Borel subset B of Rd let Xn(B) be the number of points in Xn ∩ B. For

t > 0 denote Kt = K + {x ∈ Rd : |x| < t}. In the model (Xn, λn, gn) let LR,n,t(g)
be the number of points ξ in Xn ∩ K such that ξ is not connected to any point in
Xn∩Kt at a distance R/n or less from ξ but ξ is connected to some point in Xn∩Kt

at a distance greater than R/n from ξ. Since LR,n,t(g) → LR,n(g), t → ∞, and
LR,n,t(g) ≤ Xn(K), t > 0, and EXn(K)2 <∞, the dominated convergence theorem
gives

ELR,n,t(g)→ ELR,n(g), VarLR,n,t(g)→ VarLR,n(g), t→∞.
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In order to compute the moments of LR,n,t(g), note that

LR,n,t(g) ∼
Xn(Kt)∑
i=1

1Fi ,

where ∼ denotes equality in distribution, ξi, i ∈ N are independent random variables,
independent of Xn(Kt), uniformly distributed on Kt and connected to each other
according to gn, and Fi = {ξi ∈ K; ξi is not connected to any ξj , j ≤ Xn(Kt), at a
distance R/n or less from ξi; ξi is connected to some ξj , j ≤ Xn(Kt), at a distance
greater than R/n from ξi}.

Since

LR,n,t(g)2 ∼
Xn(Kt)∑
i=1

1Fi +

Xn(Kt)∑
i=1

Xn(Kt)∑
j=1
j 6=i

1Fi 1Fj ,

the variance of LR,n,t(g) can be written as

VarLR,n,t(g) = ELR,n,t(g)+ (3.3.8)
∞∑
m=2

m(m− 1)P(F1 ∩ F2 |Xn(Kt) = m)P(Xn(Kt) = m)− (ELR,n,t(g))2.

We have

P(F1 ∩ F2 ∩ {ξ1 is connected to ξ2} |Xn(Kt) = m)

=
1

`(Kt)m

∫
K

∫
K

gR,n(|x1 − x2|)
∫
Kt

. . .

∫
Kt

m∏
i=3

(1− gR,n(|xi − x1|))(1− gR,n(|xi − x2|) dxm . . . dx3 dx2 dx1

=
1

`(Kt)m

∫
K

∫
K

gR,n(|x1 − x2|)[∫
Kt

(1− gR,n(|y − x1|))(1− gR,n(|y − x2|)) dy
]m−2

dx2 dx1,

whence
∞∑
m=2

m(m− 1)P(F1 ∩ F2 ∩ {ξ1 is connected to ξ2} |Xn(Kt) = m)P(Xn(Kt) = m)

= λ2
n

∫
K

∫
K

gR,n(|x1 − x2|)
∞∑
m=0

e−λn`(K
t)λmn

m![∫
Kt

(1− gR,n(|y − x1|))(1− gR,n(|y − x2|)) dy
]m
dx2 dx1

= λ2
n

∫
K

∫
K

gR,n(|x1 − x2|)

eλn
∫
Kt
−gR,n(|y−x1|)−gR,n(|y−x2|)+gR,n(|y−x1|)gR,n(|y−x2|) dydx2 dx1

→ λ2
np(λn, gR,n)2

∫
K

∫
K

gR,n(|x1 − x2|)pgR,n,gR,nλn
(x1, x2) dx2 dx1, (3.3.9)
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as t→∞, where we use the dominated convergence theorem.
Furthermore,

P(F1 ∩ F2 ∩ {ξ1 is not connected to ξ2} |Xn(Kt) = m)

=
1

`(Kt)m

∫
K

∫
K

(1− gn(|x1 − x2|))
∫
Kt

. . .

∫
Kt[

1−
m∏
i=3

(1− gR,n(|xi − x1|))
] m∏
i=3

(1− gR,n(|xi − x1|))[
1−

m∏
i=3

(1− gR,n(|xi − x2|))
] m∏
i=3

(1− gR,n(|xi − x2|)) dxm . . . dx3 dx2 dx1.

(3.3.10)

Exactly as in [44] Lemma 4, one can now show that

∞∑
m=2

m(m− 1)P(F1 ∩ F2 ∩ {ξ1 is not connected to ξ2} |Xn(Kt) = m)P(Xn(Kt) = m)

→ λ2
n

∫
K

∫
K

(1− gn(|x1 − x2|))
[
p(λn, gR,n)2p

gR,n,gR,n
λn

(x1, x2)−

2p(λn, gR,n)2p(λn, g
R,n)p

gR,n,gn
λn

(x1, x2) + p(λn, gn)2pgn,gnλn
(x1, x2)

]
dx2 dx1,

(3.3.11)

as t→∞, where we use the dominated convergence theorem.
Combining (3.3.8), (3.3.6), (3.3.9) and (3.3.11) yields (3.3.7).

The following lemma replaces the incorrect Lemma 5 (equation (3.2.2) and (3.2.3)
in our current chapter) of [44].

Lemma 3.3.3.

lim
n→∞

(λn`(K))−1ELR,n(g) = p(λ, gR)(1− p(λ, gR)); (3.3.12)

lim
n→∞

(λn`(K))−1VarLR,n(g) = p(λ, gR)(1− p(λ, gR)) + λ

∫
Rd

(1− g(|x|))[
p(λ, gR)2pgR,gRλ (x, 0)− 2p(λ, gR)2p(λ, gR)pgR,gλ (x, 0)+

p(λ, g)2pg,gλ (x, 0)
]
− p(λ, gR)2(1− p(λ, gR))2 dx+

λp(λ, gR)2

∫
Rd
gR(|x|)pgR,gRλ (x, 0) dx. (3.3.13)

Proof. Assertion (3.3.12) follows from (3.3.6) by direct computation. We will deduce
(3.3.13) from (3.3.7). By the dominated convergence theorem

λn
`(K)

p(λn, gR,n)2

∫
K

∫
K

gR,n(|x1 − x2|)pgR,n,gR,nλn
(x1, x2) dx2 dx1

=
λn

nd`(K)
p(λn, gR,n)2

∫
K

∫
n(K−x1)

gR(|x2|)pgR,gRλn/nd
(0, x2) dx2 dx1

→ λp(λ, gR)2

∫
Rd
gR(|x|)pgR,gRλ (x, 0) dx, n→∞. (3.3.14)
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Furthermore,

λn
`(K)

∫
K

∫
K

(1− gn(|x1 − x2|))
[
p(λn, gR,n)2p

gR,n,gR,n
λn

(x1, x2)−

2p(λn, gR,n)2p(λn, g
R,n)p

gR,n,gn
λn

(x1, x2) + p(λn, gn)2pgn,gnλn
(x1, x2)

]
−

p(λn, gR,n)2(1− p(λn, gR,n))2 dx2 dx1

=
λn

nd`(K)

∫
K

∫
n(K−x1)

(1− g(|x2|))
[
p(λn/n

d, gR)2pgR,gR
λn/nd

(0, x2)−

2p(λn/n
d, gR)2p(λn/n

d, gR)pgR,g
λn/nd

(0, x2) + p(λn/n
d, g)2pg,g

λn/nd
(0, x2)

]
−

p(λn/n
d, gR)2(1− p(λn/nd, gR))2 dx2 dx1.

By Lemma 3.3.1 with x = −x2, we can apply the dominated convergence theorem.
Combining the result with (3.3.12) and (3.3.14) yields (3.3.13).

Corollary 3.3.4.

lim
R→∞

lim
n→∞

(λn`(K))−1ELR,n(g) = 0; (3.3.15)

lim
R→∞

lim
n→∞

(λn`(K))−1VarLR,n(g) = 0. (3.3.16)

Proof. The dominated convergence theorem gives

p(λ, gR)→ p(λ, g), p(λ, gR)→ 1,

pgR,gRλ (x, 0)→ pg,gλ (x, 0), pgR,gλ (x, 0)→ pg,gλ (x, 0),

as R→∞. Now (3.3.15) follows from (3.3.12). Another application of the dominated
convergence theorem yields∫

Rd
gR(|x|)pgR,gRλ (x, 0) dx→ 0, R→∞.

Finally, the integrand in the first integral on the right hand side of (3.3.13) tends to 0
as R→∞. By Lemma 3.3.1 with λn = λnd, we can apply the dominated convergence
theorem to conclude (3.3.16).

Finally, we can prove the main result:

Theorem 3.3.5. If for R > 0

JR,n(g)− E JR,n(g)√
VarJR,n(g)

 N(0, 1), n→∞, (3.3.17)

then (3.1.1) holds.

Proof. Lemma 3 of [44] shows that

lim
n→∞

(λn`(K))−1VarIn(g) = p(λ, g) + λp(λ, g)2

∫
Rd

(1− g(|x|))pg,gλ (x, 0)− 1 dx.

(3.3.18)
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It follows from (3.3.18), Corollary 3.3.4 and Chebyshev’s inequality that

lim
R→∞

lim sup
n→∞

P

(∣∣∣∣LR,n(g)− ELR,n(g)√
VarIn(g)

∣∣∣∣ ≥ ε) ≤ lim
R→∞

lim
n→∞

VarLR,n(g)

ε2VarIn(g)
= 0, ε > 0.

Moreover, applying (3.3.18) also with g replaced by gR gives

lim
n→∞

VarJR,n(g)

VarIn(g)
= δR,

where δR is a constant. (This was incorrectly claimed in [44] with Ln,R(g) instead of
LR,n(g).) Because

(1− gR(|x|))pgR,gRλ (x, 0)− 1 ≥ (1− gR(|x|)) · 1− 1 ≥ −g(|x|)

and by (3.3.5)

(1− gR(|x|))pgR,gRλ (x, 0)− 1 ≤ 1 · pg,gλ (x, 0)− 1 ≤ Cg(|x|/2),

where C is a constant not depending on x or R, we have by the dominated convergence
theorem limR→∞ δR = 1. Now if (3.3.17) holds, then for x ∈ R

lim sup
n→∞

P

(
In(g)− E In(g)√

VarIn(g)
≤ x

)
≤ lim

ε↓0
lim
R→∞

lim sup
n→∞

P

(
JR,n(g)− E JR,n(g)√

VarIn(g)
≤ x+ ε

)
+

P

(∣∣∣∣LR,n(g)− ELR,n(g)√
VarIn(g)

∣∣∣∣ ≥ ε)
= Φ(x).

A similar argument yields

lim inf
n→∞

P

(
In(g)− E In(g)√

VarIn(g)
≤ x

)
≥ Φ(x),

which completes the proof of the theorem.

3.4 Extension to larger componenents

In this section, we discuss larger components. A central limit theorem for larger
components needs another approach, even when the connection function has bounded
support. The reason for this is that the exact moment computations of the preceding
sections no longer seem possible. At this point, we can only prove a central limit
theorem when the connection function g has bounded support. For this, we use a
result of [2], from which it follows that in order to prove a central limit theorem,
certain mixing conditions suffice. For convenience, the central limit theorem in this
section is stated a little different from the earlier ones, in the sense that we do not scale
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the connection function and the density, but instead take larger and larger subsets of
the space. This is equivalent to the case where λn = λnd in the original setup.

For a subset Λ of Zd, let the inner boundary of Λ be denoted by ∂Λ, and its
cardinality by |Λ|. Let the random variable Ir(Λ) = Ir(Λ, g) be defined as 1/r times
the number of vertices of (X,λ, g) in Λ + (0, 1]d that are contained in a component
of size r. For z ∈ Zd write Ir(z) = Ir({z}). We will prove the following central limit
theorem.

Theorem 3.4.1. Consider a random connection model with connection function g of
bounded support. Then for any increasing sequence (Λn)n∈N of finite subsets of Zd

with
⋃
n∈N Λn = Zd and |∂Λn|/|Λn| → 0, n→∞, we have

Ir(Λn)− E Ir(Λn)√
VarIr(Λn)

 N(0, 1), n→∞. (3.4.1)

In order to prove this result, we use the main theorem in [2]. The conditions
of his theorem involve three mixing conditions which are trivially satisfied when g
has bounded support, and which we do not repeat here. Under these three mixing
conditions, it is shown in [2] that if in addition∑

z∈Zd
Cov(Ir(0), Ir(z)) > 0, (3.4.2)

then it is the case that

Ir(Λn)− E Ir(Λn)√
|Λn|

∑
z∈Zd Cov(Ir(0), Ir(z))

 N(0, 1), n→∞. (3.4.3)

Because of the following elementary lemma, which we give without proof, (3.4.2) and
(3.4.3) imply our Theorem 3.4.1.

Lemma 3.4.2. Let (Yz)z∈Zd be a stationary random field with EY 2
0 < ∞. Let

(Λn)n∈N be a sequence of finite non-empty subsets of Zd with |∂Λn|/|Λn| → 0, n→
∞. If ∑

z∈Zd
|Cov(Y0, Yz)| <∞, (3.4.4)

then
1

|Λn|
Var

∑
z∈Λn

Yz →
∑
z∈Zd

Cov(Y0, Yz), n→∞.

Note that (3.4.4) is satisfied because g has bounded support. It remains to prove
(3.4.2). We give the proof in the two-dimensional case, but the method clearly gen-
eralizes to other dimensions.

With a slight abuse of notation, for a Borel subset B of R2 let Ir(B) henceforth
be defined as 1/r times the number of vertices of (X,λ, g) in B that are contained in
a component of size r. According to Lemma 3.4.2, it suffices to show that there exists
M ∈ N and γ > 0 such that for all n,

VarIr((0, nM ]2) ≥ γn2. (3.4.5)

We estimate the variance in (3.4.5) with the following general abstract trick, which
we learned from Rob van den Berg (personal communication).
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Figure 3.1: The enumeration of cubes in the first quadrant.

Lemma 3.4.3. Let Y be a random variable with finite second moment, defined on a
probability space (Ω,A,P). Let n ∈ N and let F0 ⊆ F1 ⊆ · · · ⊆ Fn be sub-σ-algebras
of A with E(Y |F0) = EY and E(Y |Fn) = Y a.s. Then we have

VarY =

n∑
i=1

E [E(Y |Fi)− E(Y |Fi−1)]
2
.

Proof. For 1 ≤ i ≤ n, denote ∆i = E(Y |Fi) − E(Y |Fi−1). We write the variance
of Y with a telescoping sum as VarY = E(

∑n
i=1 ∆i)

2. For 1 ≤ i < j ≤ n we
have E∆i∆j = EE(∆iY |Fj) − EE(∆iY |Fj−1) = 0. Hence VarY =

∑n
i=1E∆2

i , as
required.

Let R be such that g(x) = 0, x ≥ R. Define µ = E Ir((0, 1]2) > 0. Choose an
integer M > 3λR/µ. We will show that (3.4.5) holds for this M , and this is sufficient
to prove Theorem 3.4.1.

Partition the first quadrant of R2 into cubes of side length M , and denote these
cubes by Bk, k ∈ N, where the indices run as indicated in Figure 3.1. For n ∈ N let
Kn be the set of indices k ∈ {1, . . . , (n− 1)2} that are shaded in Figure 3.1.

For k ∈ ⋃n∈NKn, we define the following sets:

Ck = (rR, rR) +Bk;

Dk = Bk + (−rR, rR]2;

Lk = Dk ∩
⋃k−1
i=1 Bi;

Uk = Dk \
⋃k−1
i=1 Bi;

see Figure 3.2.
For k ∈ N, let Fk be the σ-algebra generated by the points of X in

⋃k
i=1Bi. We

will first show that for n ∈ N and k ∈ Kn the difference E(Ir((0, nM ]2)|Fk−1) −
E(Ir((0, nM ]2)|Fk) is bounded below by a positive uniform constant, with positive
probability which is also uniform in k and n.
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Figure 3.2: The shaded region on the left is Ck. The dark shaded region on the right
is Lk and the light shaded region on the right is Uk.

On the one hand, we have

E(Ir((0, nM ]2)|Fk−1) ≥ E(Ir(Ck)|Fk−1) + E(Ir((0, nM ]2 \Dk)|Fk−1)

= µM2 + E(Ir((0, nM ]2 \Dk)|Fk), (3.4.6)

since Ir(Ck) is independent of Fk−1 and since the σ-algebra generated by Ir((0, nM ]2\
Dk) and the points of X in

⋃k−1
i=1 Bi, is independent of the points of X in Bk.

On the other hand, we also have

E(Ir((0, nM ]2)|Fk)

≤ (1/r)E(X(Lk)|Fk) + (1/r)E(X(Uk)|Fk) + E(Ir((0, nM ]2 \Dk)|Fk)

= 0 + 2λR(M + rR) + E(Ir((0, nM ]2 \Dk)|Fk), (3.4.7)

with probability at least e−λ(M+2rR)2

, since X(Lk) is Fk-measurable and X(Uk) is
independent of Fk.

Combining (3.4.6) and (3.4.7) yields for n ∈ N and k ∈ Kn,

P
(
E(Ir((0, nM ]2)|Fk−1)− E(Ir((0, nM ]2)|Fk) ≥ µM2 − 2λR(M + rR)

)
≥ e−λ(M+2rR)2

.

Now observe that the box (0, nM ]2 contains at least αn2 boxes indexed by an element
of Kn, for some α > 0. Hence, since µM2 − 2λR(M + rR) > 0, we have by Lemma
3.4.3

VarIr((0, nM ]2) ≥
∑
k∈Kn

E[E(Ir((0, nM ]2)|Fk)− E(Ir((0, nM ]2)|Fk−1)]2

≥ αn2(µM2 − 2λR(M + rR))2e−λ(M+2rR)2

,

proving the result.



64 CHAPTER 3. THE RANDOM CONNECTION MODEL



Chapter 4

Fat fractal percolation and
k-fractal percolation

This chapter is based on the paper [7] by Broman, Van de Brug, Camia, Joosten, and
Meester.

4.1 Introduction

In [38] Mandelbrot introduced the following fractal percolation model. Let N ≥ 2, d ≥
2 be integers and consider the unit cube [0, 1]d. Divide the unit cube into Nd subcubes
of side length 1/N . Each subcube is retained with probability p and discarded with
probability 1 − p, independently of other subcubes. The closure of the union of the
retained subcubes forms a random subset D1

p of [0, 1]d. Next, each retained subcube

in D1
p is divided into Nd cubes of side length 1/N2. Again, each smaller subcube is

retained with probability p and discarded with probability 1 − p, independently of
other cubes. We obtain a new random set D2

p ⊂ D1
p. Iterating this procedure in every

retained cube at every smaller scale yields an infinite decreasing sequence of random
subsets D1

p ⊃ D2
p ⊃ D3

p ⊃ · · · of [0, 1]d. We define the limit set Dp :=
⋂∞
n=1D

n
p .

We will refer to this model as the Mandelbrot fractal percolation (MFP) model with
parameter p.

It is easy to extend and generalize the classical Mandelbrot model in ways that
preserve at least a certain amount of statistical self-similarity and generate random
fractal sets. It is interesting to study such models to obtain a better understanding
of general fractal percolation processes and explore possible new features that are
not present in the MFP model. In this chapter we are concerned with two natural
extensions which have previously appeared in the literature, as we mention below.
We will next introduce the models and state our main results.

4.1.1 k-fractal percolation

Let N ≥ 2 be an integer and divide the unit cube [0, 1]d, d ≥ 2, into Nd subcubes
of side length 1/N . Fix an integer 0 < k ≤ Nd and retain k subcubes in a uniform

65
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way, that is, all configurations where k cubes are retained have equal probability, other
configurations have probability 0. Let D1

k denote the random set which is obtained by
taking the closure of the union of all retained cubes. Iterating the described procedure
in retained cubes and on all smaller scales yields a decreasing sequence of random sets
D1
k ⊃ D2

k ⊃ D3
k ⊃ · · · . We are mainly interested in the connectivity properties of

the limiting set Dk :=
⋂∞
n=1D

n
k . This model was called the micro-canonical fractal

percolation process by Lincoln Chayes in [18] and both correlated fractal percolation
and k out of Nd fractal percolation by Dekking and Don [21]. We will adopt the terms
k-fractal percolation and k-model.

For F ⊂ [0, 1]d, we say that the unit cube is crossed by F if there exists a connected
component of F which intersects both {0} × [0, 1]d−1 and {1} × [0, 1]d−1. Define
θ(k,N, d) as the probability that [0, 1]d is crossed by Dk. Similarly, σ(p,N, d) denotes
the probability that [0, 1]d is crossed by Dp. Let us define the critical probability
pc(N, d) for the MFP model and the critical threshold value kc(N, d) for the k-model
by

pc(N, d) := inf{p : σ(p,N, d) > 0}, kc(N, d) := min{k : θ(k,N, d) > 0}.

Let Ld be the d-dimensional lattice with vertex set Zd and with edge set given by
the adjacency relation: (x1, . . . , xd) = x ∼ y = (y1, . . . , yd) if and only if x 6= y,
|xi−yi| ≤ 1 for all i and xi = yi for at least one value of i. Let pc(d) denote the critical
probability for site percolation on Ld. It is known (see [24]) that pc(N, d)→ pc(d) as
N →∞. We have the following analogous result for the k-model.

Theorem 4.1.1. For all d ≥ 2, we have that

lim
N→∞

kc(N, d)

Nd
= pc(d).

Remark 4.1.2. Note that the choice for the unit cube in the definitions of θ(k,N, d)
and σ(p,N, d) (and thus implicitly also in the definitions of kc(N, d) and pc(N, d))
is rather arbitrary: We could define them in terms of crossings of other shapes such
as annuli, for example, and obtain the same conclusion, i.e. kc(N, d)/Nd → pc(d)
as N → ∞, where θ(k,N, d) and kc(N, d) are defined using the probability that Dk

crosses an annulus. One advantage of using annuli is that the percolation function
σ(p,N, d) is known to have a discontinuity at pc(N, d) for all N, d and any choice of
annulus [6, Corollary 2.6]. (This is known to be the case also when pc(N, d) is defined
using the unit cube if d = 2 [16,20], but for d ≥ 3 it is proven only for N sufficiently
large [5].) In the present chapter we stick to the “traditional” choice of the unit cube.

Remark 4.1.3. For the MFP model it is the case that, for p > pc(d),

σ(p,N, d)→ 1, (4.1.1)

as N → ∞. This is part (b) of Theorem 2 in [24]. During the course of the proof of
Theorem 4.1.1 we will prove a similar result for the k-model, see Theorem 4.3.2.

Next, consider the following generalization of both the k-model and the MFP
model. Let d ≥ 2, N ≥ 2 be integers and let Y = Y (N, d) be a random variable
taking values in {0, . . . , Nd}. Divide the unit cube into Nd smaller cubes of side
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length 1/N . Draw a realization y according to Y and retain y cubes uniformly. Let
D1
Y denote the closure of the union of the retained cubes. Next, every retained cube

is divided into Nd smaller subcubes of side length 1/N2. Then, for every subcube
C in D1

Y (where we slightly abuse notation by viewing D1
Y as the set of retained

cubes in the first iteration step) draw a new (independent) realization y(C) of Y and
retain y(C) subcubes in C uniformly, independently of all other subcubes. Denote
the closure of the union of retained subcubes by D2

Y . Repeat this procedure in every
retained subcube at every smaller scale and define the limit set DY :=

⋂∞
n=1D

n
Y .

We will call this model the generalized fractal percolation model (GFP model) with
generator Y . Define φ(Y,N, d) as the probability of the event that [0, 1]d is crossed
by DY .

By taking Y equal to an integer k, resp. to a binomially distributed random vari-
able with parameters Nd and p, we obtain the k-model, resp. the MFP model with
parameter p. If Y is stochastically dominated by a binomial random variable with
parameters Nd and p, where p < pc(N, d), then by standard coupling techniques it fol-
lows that φ(Y,N, d) = 0. Likewise, if Y (N, d) dominates a binomial random variable
with parameters Nd and p, where p > pc(d), then φ(Y (N, d), N, d) ≥ σ(p,N, d) → 1
as N → ∞, as mentioned in Remark 4.1.3. The following theorem, which gen-
eralizes (4.1.1), shows that the latter conclusion still holds if for some p > pc(d),
P(Y (N, d) ≥ pNd)→ 1 as N →∞.

Theorem 4.1.4. Consider the GFP model with generator Y (N, d). Let p > pc(d).
Suppose that P(Y (N, d) ≥ pNd)→ 1 as N →∞. Then

lim
N→∞

φ(Y (N, d), N, d) = 1.

Remark 4.1.5. Observe that by Chebyshev’s inequality the condition of Theo-
rem 4.1.4 is satisfied if, for some p > pc(d), EY (N, d) ≥ pNd for all N ≥ 2 and
Var(Y (N, d))/N2d → 0 as N →∞.

Open problem 4.1.6. It is a natural question to ask whether a “symmetric version”
of Theorem 4.1.4 is true. That is, if e.g. P(Y (N, d) ≤ pNd) → 1 as N → ∞, for
some p < pc(d), implies φ(Y (N, d), N, d) → 0 as N → ∞. The proof of Theorem
4.1.4 can not be adapted to this situation.

4.1.2 Fat fractal percolation

Let (pn)n≥1 be a non-decreasing sequence in (0, 1] such that
∏∞
n=1 pn > 0. We call fat

fractal percolation a model analogous to the MFP model, but where at every iteration
step n a subcube is retained with probability pn and discarded with probability 1−pn,
independently of other subcubes. Iterating this procedure yields a decreasing sequence
of random subsets D1

fat ⊃ D2
fat ⊃ D3

fat ⊃ · · · and we will mainly study connectivity
properties of the limit set Dfat :=

⋂∞
n=1D

n
fat. In [17] it is shown that if pn → 1 and∏∞

n=1 pn = 0, then the limit set does not contain a directed crossing from left to right.
For a point x ∈ Dfat, let Cxfat denote its connected component :

Cxfat := {y ∈ Dfat : y connected to x in Dfat}.
We define the set of “dust” points by Dd

fat := {x ∈ Dfat : Cxfat = {x}}. Define
Dc

fat := Dfat \ Dd
fat, which is the union of connected components larger than one
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point. Let λ denote the d-dimensional Lebesgue measure. It is easy to prove that
λ(Dfat) > 0 with positive probability, see Proposition 4.4.1. Moreover, we can show
that the Lebesgue measure of the limit set is positive a.s. given non-extinction, i.e.
Dfat 6= ∅.

Theorem 4.1.7. We have that λ(Dfat) > 0 a.s. given non-extinction.

It is a natural question to ask whether both Dc
fat and Dd

fat have positive Lebesgue
measure. The following theorem shows that they cannot simultaneously have positive
Lebesgue measure.

Theorem 4.1.8. Given non-extinction of the fat fractal process, it is the case that
either

λ(Dd
fat) = 0 and λ(Dc

fat) > 0 a.s. (4.1.2)

or
λ(Dd

fat) > 0 and λ(Dc
fat) = 0 a.s. (4.1.3)

Part (ii) of the following theorem gives a sufficient condition under which (4.1.2)
holds. Furthermore, the theorem shows that the limit set either has an empty interior
a.s. or can be written as the union of finitely many cubes a.s.

Theorem 4.1.9. We have that

(i) If
∏∞
n=1 p

Ndn

n = 0, then Dfat has an empty interior a.s.;

(ii) If
∏∞
n=1 p

Nn

n > 0, then λ(Dd
fat) = 0 a.s.;

(iii) If
∏∞
n=1 p

Ndn

n > 0, then Dfat can be written as the union of finitely many cubes
a.s.

Open problem 4.1.10. Part (ii) of Theorem 4.1.9 shows that if
∏∞
n=1 p

Nn

n > 0,
then (4.1.2) holds. However, we do not have an example for which (4.1.3) holds, and
we do not know whether (4.1.3) is possible at all.

In two dimensions, we have the following characterizations of λ(Dc
fat) being posi-

tive a.s. given non-extinction of the fat fractal process.

Theorem 4.1.11. Let d = 2. The following statements are equivalent.

(i) λ(Dc
fat) > 0 a.s., given non-extinction of the fat fractal process;

(ii) There exists a set U ⊂ [0, 1]2 with λ(U) > 0 such that for all x, y ∈ U it is the
case that P(x is in the same connected component as y) > 0;

(iii) There exists a set U ⊂ [0, 1]2 with λ(U) = 1 such that for all x, y ∈ U it is the
case that P(x is in the same connected component as y) > 0.

Let us now outline the rest of the chapter. The next section will be devoted to
a formal introduction of the fractal percolation processes in the unit cube. We also
define an ordering on the subcubes which will facilitate the proofs of Theorems 4.1.1
and 4.1.4 in Section 4.3. In Section 4.4 we prove our results concerning fat fractal
percolation.
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4.2 Preliminaries

In this section we set up an ordering for the subcubes of the fractal processes in the
unit cube which will turn out to be very useful during the course of the proofs. We also
give a formal probabilistic definition of the different fractal percolation models. We
follow [24] almost verbatim in this section; a simple reference to [24] would however
not be very useful for the reader, so we repeat some definitions here.

Order Jd := {0, 1, . . . , N − 1}d in some way, say lexicographically by coordi-
nates. For a positive integer n, write Jd,n := {(i1, . . . , in) : ij ∈ Jd, 1 ≤ j ≤ n} for
the set of n-vectors with entries in Jd. Set Jd,0 := {∅}. With I = (i1, . . . , in) =
((i1,1, . . . , i1,d), . . . , (in,1, . . . , in,d)) we associate the subcube of [0, 1]d given by

C(I) = c(I) + [0, N−n]d,

where

c(I) =

 n∑
j=1

N−jij,1, . . . ,
n∑
j=1

N−jij,d


and c(∅) is defined to be the origin. Such a cube C(I) is called a level-n cube and
we write |I| = n. A concatenation of I ∈ Jd,n and j ∈ Jd is denoted by (I, j), which
is in Jd,n+1. We define the set of indices for all cubes until (inclusive) level-n as
J (n) := Jd,0 ∪ Jd,1 ∪ · · · ∪ Jd,n and we order them in the following way. We declare
I = (i1, . . . , ia) < I′ = (i′1, . . . , i

′
b) if and only if

• either ir < i′r (according to the order on Jd) where r ≤ min{a, b} is the smallest
index so that ir 6= i′r holds;

• or a > b and ir = i′r for r = 1, . . . , b.

To clarify this ordering we give a short example, see Figure 4.1. Suppose N = 2,
d = 2 and J2 is ordered by (1, 1) > (1, 0) > (0, 1) > (0, 0), then the ordering of J (2)

starts with

∅ > ((1, 1)) > ((1, 1), (1, 1)) > ((1, 1), (1, 0))

> ((1, 1), (0, 1)) > ((1, 1), (0, 0)) > ((1, 0)) > . . .

We introduce the following formal probabilistic definition of the fractal percolation
models. As noted before, the k-model and MFP model can be obtained from the
GFP model with generator Y by setting Y ≡ k, resp. Y binomially distributed with
parameters Nd and p ∈ [0, 1]. Therefore, we only provide a formal probabilistic
definition of the GFP model and the fat fractal percolation model. Define the index
set J :=

⋃∞
n=0 J

d,n. We define a family of random variables {Zmodel(I)}, where I ∈ J
and – here as well as in the rest of the section – “model” stands for either p, fat, k or
Y .

1. GFP model with generator Y : For every I ∈ J , let y(I) denote a realization
of Y , independently of other I′. We define J(I) as a uniform choice of y(I)
different indices of Jd, independently of other J(I′). For j ∈ Jd define

ZY (I, j) =

{
1, j ∈ J(I),
0, otherwise.
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C((1,1),(1,0))

C((1,1),(0,1)) C((1,1),(1,1))

C((1,0),(1,1))

C((1,0),(1,1))C((1,0),(0,0))

C((1,1),(0,0))

3

2
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C((1,0),(0,1))

10 8

C((0,1))

C((0,0))

Figure 4.1: Illustration of the ordering of subcubes in J (2), for N = 2 and d = 2. A
black dot denotes the corner point c(I) of a subcube C(I). The number in the lower
left corner of a subcube indicates the rank of the subcube in the ordering: e.g. the
unit cube, i.e. C(∅), has rank 1 and C((0, 0)) has rank 17.

2. Fat fractal percolation with parameters (pn)n≥1: For every I ∈ J and j ∈ Jd,
let n = |I| and define

Zfat(I, j) =

{
1, with probability pn+1,
0, with probability 1− pn+1,

independently of all other Zfat(I
′).

For each I ∈ J we define the indicator function 1model(I) by

1model(∅) = 1, 1model(I) = Zmodel(i1)Zmodel(i1, i2) · · ·Zmodel(I),

where I = (i1, i2, . . . , in) ∈ Jd,n. We retain the subcube C(I) if 1model(I) = 1 and
we write Dn

model for the set of retained level-n cubes. Note that D1
model, D

2
model, . . .

correspond to the sets informally constructed in the introduction. We denote by
Pmodel the distribution of the corresponding model on Ω = {0, 1}C , where C :=
{C(I) : I ∈ J } denotes the collection of all subcubes, endowed with the usual sigma
algebra generated by the cylinder events. To simplify the notation, we will drop the
subscripts fat, k, p, Y when there is no danger of confusion.

4.3 Proofs of the k-fractal results

In this section we prove Theorem 4.1.1 and Theorem 4.1.4. The proof of Theo-
rem 4.1.1 is divided in two parts. First we treat the subcritical case and show that
lim infN→∞ kc(N, d)/Nd ≥ pc(d).
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Theorem 4.3.1. Consider the k-model. We have

lim inf
N→∞

kc(N, d)/Nd ≥ pc(d).

In the supercritical case, we prove that the crossing probability converges to 1 as
N →∞. Again, for future reference we state this as a theorem.

Theorem 4.3.2. Let p > pc(d) and let (k(N))N≥2 be a sequence of integers such that
k(N)/Nd ≥ p, for all N ≥ 2. We have

lim
N→∞

θ(k(N), N, d) = 1.

Theorem 4.1.1 follows immediately from these two theorems.
We prove Theorems 4.3.1 and 4.3.2 in Sections 4.3.1 and 4.3.2, respectively. In

Section 4.3.3 we prove Theorem 4.1.4, using the idea of the proof of Theorem 4.3.1
and the result of Theorem 4.3.2.

4.3.1 Proof of Theorem 4.3.1

Let p < pc(d) and consider a sequence (k(N))N≥2 such that k(N)/Nd ≤ p, for all
N ≥ 2, and k(N)/Nd → p as N →∞. Our goal is to show that the probability that
the unit cube is crossed by Dk(N), is equal to zero for all N large enough. Let N ≥ 2
and let Dp0

be the limit set of an MFP process with parameters p0 and N , where
p < p0 < pc(d). First, part (a) of Theorem 2 in [24] states that

pc(d) ≤ pc(N, d), (4.3.1)

for all N . Hence, the MFP process with parameter p0 < pc(d) is subcritical. There-
fore, a natural approach to prove that the probability that Dk(N) crosses the unit
cube equals zero for N large enough would be to couple the limit set Dk(N) to the
limit set Dp0

in such a way that Dk(N) ⊂ Dp0
. However, a “direct” coupling between

the limit sets Dk(N) and Dp0 is not possible, since with fixed positive probability at
each iteration of the MFP process the number of retained subcubes is less than k(N).
We therefore need to find a more refined coupling.

The following is an informal strategy of the proof. We will define an event E on
which the MFP process contains an infinite tree of retained subcubes, such that each
subcube in this tree contains at least k(N) retained subcubes in the tree. Next, we
perform a construction of two auxiliary random subsets of the unit cube, from which
it will follow that the law of Dk(N) is stochastically dominated by the conditional law
of Dp0 , conditioned on the event E. In particular, the probability that Dk(N) crosses

[0, 1]d is less than or equal to the conditional probability that Dp0 crosses the unit
cube, given E. The latter probability is zero for N large enough, since the event E
has positive probability for N large enough and the MFP process is subcritical.

Let us start by defining the event E. Consider an MFP process with parameters
p0 and N . For notational convenience we call the unit cube the level-0 cube. A
level-n cube, n ≥ 0, is declared 0-good if it is retained and contains at least k(N)
retained level-(n+1) subcubes. (We adopt the convention that [0, 1]d is automatically
retained.) Recursively, we define the notion m-good, for m ≥ 0. A level-n cube, for
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n ≥ 0, is (m+ 1)-good if it is retained and contains at least k(N) m-good subcubes.
We say that the unit cube is ∞-good if it is m-good for every m ≥ 0. Define the
following events

Em := {[0, 1]d is m-good},
E := {[0, 1]d is ∞-good}. (4.3.2)

The following lemma states that we can make the probability of E arbitrary close
to 1, for N large enough. In particular, E has positive probability for large enough
N , which will be sufficient for the proof of Theorem 4.3.1.

Lemma 4.3.3. Let p0 < pc(d). Let (k(N))N≥2 be a sequence of integers satisfying
lim supN→∞ k(N)/Nd < p0. Consider an MFP model with parameters p0 and N .
For all ε > 0 there exists N0 such that Pp0

(E) > 1− ε for all N ≥ N0.

Proof. Let δ > 0 and N0 be such that k(N)/Nd ≤ p0 − 2δ =: p for all N ≥ N0.
Choose N1 ≥ N0 so large that p0/(4δ

2Nd) < δ for N ≥ N1. We will show that

Pp0(Em) ≥ 1− 1

4δ2Nd
, (4.3.3)

for all m ≥ 0 and N ≥ N1. Since Em decreases to E as m→∞, it follows that

Pp0
(E) = lim

m→∞
Pp0

(Em) ≥ 1− 1

4δ2Nd
,

for N ≥ N1. Now take N2 ≥ N1 so large that 1 − 1
4δ2Nd

> 1 − ε for all N ≥ N2. It
remains to show (4.3.3).

We prove (4.3.3) by induction on m. Consider the event E0, i.e. the event that
the unit cube contains at least k(N) retained level-1 subcubes. Let X(n, p) denote a
binomially distributed random variable with parameters n ∈ N and p ∈ [0, 1]. Since
the number of retained level-1 cubes has a binomial distribution with parameters
Nd and p0, it follows from Chebyshev’s inequality that, for every N ≥ N1, we have
(writing P for the probability measure governing the binomially distributed random
variables)

Pp0(E0) = P(X(Nd, p0) ≥ k(N))

≥ P(X(Nd, p0) ≥ pNd)

≥ 1− VarX(Nd, p0)

4δ2N2d

= 1− p0(1− p0)Nd

4δ2N2d

≥ 1− 1

4δ2Nd
.

Next, let m ≥ 0 and N ≥ N1 and suppose that (4.3.3) holds for this m and N .
Recall that Em+1 is the event that the unit cube contains at least k(N) m-good level-
1 cubes. The probability that a level-1 cube is m-good, given that it is retained, is
equal to Pp0(Em). Using the induction hypothesis, we get

Pp0
(Em+1) = P(X(Nd, p0Pp0

(Em)) ≥ k(N))

≥ P(X(Nd, p0(1− 1
4δ2Nd

)) ≥ k(N)).
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By our choices for δ and N it follows that p0(1 − 1
4δ2Nd

) > p + δ. Hence, using
Chebyshev’s inequality, we get

P(X(Nd, p0(1− 1
4δ2Nd

)) ≥ k(N)) ≥ P(X(Nd, p+ δ) ≥ k(N))

≥ P(X(Nd, p+ δ) ≥ pNd)

≥ 1− VarX(Nd, p+ δ)

δ2N2d

≥ 1− 1

4δ2Nd
.

Therefore, the induction step is valid and we have proved (4.3.3).

Proof of Theorem 4.3.1. Let p, p0 be such that p < p0 < pc(d). Let (k(N))N≥2 be
a sequence such that k(N)/Nd ≤ p, for all N ≥ 2, and k(N)/Nd → p as N → ∞.
Consider an MFP model with parameters p0 and N and define the event E as in
(4.3.2). Henceforth, we assume that N is so large that Pp0(E) > 0, which is possible
by Lemma 4.3.3. In order to prove Theorem 4.3.1 we will use E to construct two
random subsets, D̃p0

and D̃k(N), of the unit cube, on a common probability space
and with the following properties:

(i) D̃k(N) ⊂ D̃p0 ;

(ii) the law of D̃p0 is stochastically dominated by the conditional law of Dp0 , con-
ditioned on the event E;

(iii) the law of D̃k(N) is the same as the law of Dk(N).

It follows that the law of Dk(N) is stochastically dominated by the conditional
law of Dp0 , conditioned on the event E. Hence, the probability that the unit cube
is crossed by Dk(N) is at most the conditional probability that Dp0

crosses the unit
cube, conditioned on the event E. By (4.3.1) the MFP process with parameter p0 is
subcritical, thus the latter probability equals zero. Using the fact that k(N)/Nd → p
as N →∞, we conclude that

lim inf
N→∞

kc(N, d)

Nd
≥ p.

Since p < pc(d) was arbitrary, we get

lim inf
N→∞

kc(N, d)

Nd
≥ pc(d).

It remains to construct random sets D̃p0
, D̃k(N) with the properties (i)-(iii). First

we construct two sequences (D̃n
p0

)n≥1, (D̃
n
k(N))n≥1 of decreasing random subsets. Let

L be the conditional law of the number of ∞-good level-1 cubes of the MFP process,
conditioned on the event E. Note that the support of L is {k(N), k(N) + 1, . . . , Nd}.
Furthermore, for a fixed level-n cube C(I), L is also equal to the conditional law of
the number of ∞-good level-(n + 1) subcubes in C(I), conditioned on C(I) being
∞-good.
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Choose an integer l according to L and choose l level-1 cubes uniformly. Define
D̃1
p0

as the closure of the union of these l level-1 cubes. Choose k(N) out of these l

cubes in a uniform way and define D̃1
k(N) as the closure of the union of these k(N)

cubes. For each level-1 cube C(I) ⊂ D̃1
p0

, pick an integer l(I) according to L, inde-
pendently of other cubes, and choose l(I) level-2 subcubes of C(I) in a uniform way.
Define D̃2

p0
as the closure of the union of all selected level-2 cubes. For each level-1

cube C(I) ⊂ D̃1
k(N), uniformly choose k(N) out of the l(I) selected level-2 subcubes.

Define D̃2
k(N) as the closure of the union of the k(N)2 selected level-2 cubes of C(I).

Iterating this procedure yields two infinite decreasing sequences of random subsets
(D̃n

p0
)n≥1, (D̃

n
k(N))n≥1.

Now define

D̃p0
:=

∞⋂
n=1

D̃n
p0
, D̃k(N) :=

∞⋂
n=1

D̃n
k(N).

By construction, for each n ≥ 1, we have that (1) D̃n
k(N) ⊂ D̃n

p0
, (2) the law of D̃n

p0

is stochastically dominated by the conditional law of Dn
p0

given E and (3) the law of

D̃n
k(N) is equal to the law of Dn

k(N). It follows that the limit sets D̃p0
, D̃k(N) satisfy

properties (i)-(iii).

4.3.2 Proof of Theorem 4.3.2

Let us start by outlining the proof. The first part consists mainly of setting up
the framework, where we use the notation of Falconer and Grimmett [24], which
will enable us in the second part to prove that the subcubes of the fractal process
satisfy certain “good” properties with probability arbitrarily close to 1 as N → ∞.
Informally, a subcube is good when there exist many connections inside the cube
between its faces and when it is also connected to other good subcubes. Therefore,
the probability of crossing the unit cube converges to 1 as N →∞.

Although we will partly follow [24], it does not seem possible to use Theorem 2.2
of [24] directly. First, we state (a slightly adapted version of) Lemma 2 of [24], which
concerns site percolation with parameter π on Ld. We let every vertex of Ld be colored
black with probability π and white otherwise, independently of other vertices. We
write Pπ for the ensuing product measure with density π ∈ [0, 1]. We call a subset C
of Ld a black cluster if it is a maximal connected subset (with respect to the adjacency
relation on Ld) of black vertices. Denote the cube with vertex set {1, 2, . . . , N}d by
BN . Let L be the set of edges of the unit cube [0, 1]d, that is L contains all sets of
the form

Lr(a) = {a1} × {a2} × · · · × {ar−1} × [0, 1]× {ar+1} × · · · × {ad}

as r ranges over {1, . . . , d} and a = (a1, a2, . . . , ad) ranges over {0, 1}d. For each
L = Lr(a) ∈ L we write

LN = {x ∈ BN : xi = max{1, aiN} for 1 ≤ i ≤ d, i 6= r}

for the corresponding edge of BN .
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Lemma 4.3.4. Suppose π > pc(d), ε > 0 and let q be a positive integer. There
exist positive integers u and N1 such that the following holds for all N ≥ N1. Let
U(1), . . . , U(q) be subsets of vertices of BN such that for each r ∈ {1, . . . , q}, (i)
|U(r)| ≥ u and (ii) there exists L ∈ L such that U(r) ⊂ LN . Then,

Pπ

(
there exists a black cluster CN such that |CN ∩ LN | ≥ u
for all L ∈ L, and |CN ∩ U(r)| ≥ 1, for all r ∈ {1, . . . , q}

)
≥ 1− ε

2
. (4.3.4)

Our goal is to show that the following holds uniformly in n: With probability
arbitrarily close to 1 as N → ∞, there is a sequence of cubes in Dn

k(N), each with
at least one edge in common with the next, which crosses the unit cube. In order to
prove this we examine the cubes C(I), for I ∈ J (n), in turn according to the ordering
on J (n), and declare some of them to be good according to the rule given below.
Since the probabilistic bounds on the goodness of cubes will hold uniformly in n, the
desired conclusion follows.

Fix integers n, u, k ≥ 1 until Lemma 4.3.7. For m ≥ 1, identify a level-m cube with
a vertex in BNm ⊂ Ld in the canonical way. A set of level-m cubes {C(I1), . . . , C(Il)}
is called edge-connected if they form a connected set with respect to the adjacency
relation of Ld. Whether a cube C(I), for I ∈ J (n), is called (n, u)-good or not, is
determined by the following inductive procedure. Let I ∈ J (n), and assume that the
goodness of C(I′) has been decided for all I′ < I. We have the following possibilities:

(a) |I| = n. Then C(I) is always declared (n, u)-good.

(b) 0 ≤ |I| = m < n.

In the latter case we act as follows. Note that the subcubes C(I, j) with j ∈ Jd have
already been examined, since (I, j) < I. Define the following set of level-(m + 1)
subcubes of C(I),

D(I) := {C(I, j) : j ∈ Jd with C(I, j) (n, u)-good and Zk(I, j) = 1}. (4.3.5)

We declare C(I) to be (n, u)-good if there exists an edge-connected set H(I) ⊂ D(I)
such that

(i) Each edge of C(I) intersects at least u cubes of H(I);

(ii) For every (n, u)-good level-m cube C(I′) with I′ < I that has (at least) one
edge in common with C(I), there are a cube of H(I′) and a cube of H(I) with
a common edge.

(If there is more than one candidate for H(I) we use some deterministic rule to choose
one of them.) This procedure determines whether C(I) is (n, u)-good for each I in
turn. Note that it is easier for higher level cubes to be (n, u)-good than for lower level
cubes. In particular, for the unit cube, i.e. C(∅), it is the hardest to be (n, u)-good.

The next lemma shows that if the unit cube is (n, u)-good then there is a sequence
of cubes in Dn

k , each with at least one edge in common with the next, which connects
the “left-hand side” of [0, 1]d with its “right-hand side”. If such a sequence of cubes
exists in Dn

k we say that percolation occurs in Dn
k .

Lemma 4.3.5. Suppose [0, 1]d is (n, u)-good, then percolation occurs in Dn
k .
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Proof. Assume that the unit cube, i.e. C(∅), is (n, u)-good. We will show, with a
recursive argument, that for 1 ≤ m ≤ n there exists an edge-connected chain of
retained (n, u)-good level-m cubes which joins {0} × [0, 1]d−1 and {1} × [0, 1]d−1. In
particular, this holds for m = n and hence percolation occurs in Dn

k .
Since the unit cube is assumed to be (n, u)-good, D(∅) contains by definition an

edge-connected subset H(∅) of retained (n, u)-good level-1 subcubes, such that each
edge of C(∅) intersects at least u cubes of H(∅). In particular, there is a sequence of
retained (n, u)-good edge-connected level-1 cubes that connects the left-hand side of
[0, 1]d with its right-hand side.

Let 1 ≤ m < n and assume that there exists an edge-connected chain C(I1), . . . ,
C(Il) of retained (n, u)-good level-m cubes which connects the left-hand side of [0, 1]d

with its right-hand side. For each i, 1 ≤ i ≤ l, either Ii < Ii+1 or Ii+1 < Ii. By
condition (ii), there exist level-(m+ 1) cubes of H(Ii+1) which are edge-connected to
level-(m+ 1) cubes of H(Ii). These level-(m+ 1) cubes C(J) are all (n, u)-good and
have Zk(J) = 1, by (4.3.5) and the definition of the H(I). It follows that there is
an edge-connected chain of retained (n, u)-good level-(m+ 1) cubes C(J) which joins
{0} × [0, 1]d−1 and {1} × [0, 1]d−1.

For I ∈ J (n), define the index I− ∈ J (n) by

I− = max{I′ : I′ < I and |I′| ≤ |I|}.

If there is no such index, I− is left undefined. For each I ∈ J (n) we let F(I) denote
the σ-field

F(I) = σ(Zk(I′, j) : |I′| ≤ n− 1, I′ ≤ I, j ∈ Jd).
If I− is undefined, we take F(I−) to be the trivial σ-field. Note that F(I) is generated
by those Zk that have been examined prior to deciding whether C(I) is (n, u)-good.
In particular, by virtue of the ordering on the cubes as introduced in Section 4.2,
F(I−) does not contain any information about subcubes of I.

Let p > pc(d) and let (k(N))N≥2 be a sequence such that k(N)/Nd ≥ p, for
all N ≥ 2. We want to prove that, for every ε > 0, the probability that [0, 1]d is
(n, u)-good in the k(N)-model is at least 1 − ε, for N ≥ N0, where N0 is an integer
which has to be taken sufficiently large to satisfy certain probabilistic bounds but is
independent of n.

Let us first give a sketch of the proof. Fix N ≥ N0 and consider the k(N)-model.
We use a recursive argument. The smallest level-n cube according to the ordering on
J (n) is by definition (n, u)-good. Let I ∈ J (n) and assume that

Pk(N)(C(I′) is (n, u)-good | F(I′−)) ≥ 1− ε

for all I′ < I. We prove that, given F(I−), C(I) is (n, u)-good with probability at
least 1− ε. The proof of this consists of a coupling between a product measure with
density π ∈ (pc(d), (1− ε)p) in the box BN and the law of the set of subcubes C(I, j)
of C(I) which are (n, u)-good and satisfy Zk(N)(I, j) = 1. Applying Lemma 4.3.4
to the product measure combined with the coupling yields that the subcubes satisfy
properties (i) and (ii) with probability at least 1− ε. Therefore, given F(I−), C(I) is
(n, u)-good with probability at least 1 − ε. Iterating this argument then yields that
the unit cube is (n, u)-good with probability at least 1− ε, for N ≥ N0.
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The proof in [24] of the analogous result that σ(p,N, d) → 1 as N → ∞ for
p > pc(d) is considerably less involved. In the context of [24], subcubes are retained
with probability p independently of other cubes, which is not the case in k-fractal
percolation. Therefore, they can directly show that there exists π > pc(d) such that,
for I ∈ J (n), the law of the set of subcubes C(I, j) of C(I) which are good and satisfy
Zp(I, j) = 1, dominates an i.i.d. process on the box BN with density π.

We need the following result for binomially distributed random variables, which we
state as a lemma for future reference. Since the result follows easily from Chebyshev’s
inequality, we omit the proof.

Lemma 4.3.6. Let p > pc(d) and let (k(N))N≥2 be a sequence of integers such
that k(N)/Nd ≥ p for all N ≥ 2. Let ε > 0 be such that (1 − ε)p > pc(d), let
π ∈ (pc(d), (1− ε)p) and define M := ((1− ε)p+ π)Nd/2. There exists N2 such that

P({X(k(N), 1− ε) ≥M} ∩ {X ′(Nd, π) ≤M}) ≥ 1− ε/2,

for N ≥ N2, where X and X ′ are independent, binomially distributed random vari-
ables with the indicated parameters.

We now prove that, for any ε > 0, the unit cube is (n, u)-good with probability at
least 1− ε, for N large enough but independent of n.

Lemma 4.3.7. Let p > pc(d) and let (k(N))N≥2 be a sequence of integers such that
k(N)/Nd ≥ p, for all N ≥ 2. Let ε > 0 be such that (1 − ε)p > pc(d). Take
π ∈ (pc(d), (1− ε)p) and set q = 3d. Let u and N1 be given by Lemma 4.3.4. Let N2

be given by Lemma 4.3.6. Set N0 = max{N1, N2}. Then, for all n ≥ 1,

Pk(N)([0, 1]d is (n, u)-good) ≥ 1− ε, (4.3.6)

for all N ≥ N0.

Proof. Fix N ≥ N0 and n ≥ 1 and consider the k(N)-fractal model. Our aim is to
show that

Pk(N)(C(I) is (n, u)-good | F(I−)) ≥ 1− ε (4.3.7)

holds for all I ∈ J (n). Taking I = ∅ then yields (4.3.6). We prove this with a recursive
argument. Let I0 be the smallest index in J (n), according to the ordering on J (n).
By virtue of the ordering, we have |I0| = n. Hence, by definition, C(I0) is (n, u)-good.
In particular, (4.3.7) holds for I0.

The recursive step is as follows. Take an index I ∈ J (n) and assume that

Pk(N)(C(I′) is (n, u)-good | F(I′−)) ≥ 1− ε, (4.3.8)

has been established for all indices I′ in J (n) less than I. We have to show that (4.3.7)
holds for I given this assumption. We have two cases:

(a) |I| = n; then Pk(N)(C(I) is (n, u)-good) = 1 and (4.3.7) is true.

(b) 0 ≤ |I| = m < n.
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For case (b), given F(I−), the goodness of C(I′) is determined (in particular) for
all I′ < I with |I| = m. Let

Q =

{
I′ : I′ < I and C(I′) is an (n, u)-good level-m

cube with an edge in common with C(I)

}
.

For each I′ ∈ Q, let E(I′) be some common edge of C(I) and C(I′). Since C(I′)
is (n, u)-good, there are at least u level-(m + 1) subcubes in H(I′) which intersect
E(I′); call this set of subcubes U(I′). To see whether C(I) is (n, u)-good, we look at
C(I, j(l)) where j(l), 1 ≤ l ≤ Nd, are the vectors of Jd arranged in order. We have
(I, j(l)) < I, so by the induction hypothesis (4.3.8) we have

Pk(N)(C(I, j(l)) is (n, u)-good | F((I, j(l))−)) ≥ 1− ε, (4.3.9)

for all l. Note that F((I, j(1))−) = F(I−).
We identify each subcube of C(I) in the canonical way with a vertex in BN . We

will construct three random subsets G1, G2, G3 of BN on a common probability space
with the following properties:

(I) the law of G1 equals the law of the set of subcubes C(I, j) of C(I) which are
(n, u)-good and satisfy Zk(N)(I, j) = 1;

(II) G2 is obtained by first selecting k(N) vertices of BN uniformly and then retain-
ing each selected vertex with probability 1− ε, independently of other vertices;

(III) the law of G3 is the Bernoulli product measure with density π on BN ;

(IV) G1 ⊃ G2;

(V) P(G2 ⊃ G3) ≥ 1− ε/2.

From (4.3.9) and a standard coupling technique, sometimes referred to as se-
quential coupling (see e.g. [35]), the construction of G1 and G2 with properties (I),
(II) and (IV) is straightforward. The construction of G3 such that properties (III)
and (V) hold is given below. Let |G2| denote the cardinality of the set G2. Define
M = ((1− ε)p+ π)Nd/2 and let R be a number drawn from a binomial distribution
with parameters Nd and π, independently of G1 and G2. If |G2| ≥ M and M ≥ R
we select R vertices uniformly out of the |G2| retained vertices of G2 and call this set
G3. Otherwise, we select, independently of G1 and G2, R vertices of BN in a uniform
way and call this set G3. From the construction (note that also G2 was obtained in
a uniform way) it is clear that G3 satisfies property (III). Observe that |G2| has a
binomial distribution with parameters k(N) and 1− ε. From Lemma 4.3.6 it follows
that

P({|G2| ≥M} ∩ {R ≤M}) ≥ 1− ε/2.
Hence, property (V) also holds.

Let us now return to the goodness of C(I). As before, we identify the random
subsets G1, G2, G3 of BN with the corresponding sets of subcubes of C(I) in the
canonical way. It then follows from property (III) and Lemma 4.3.4 (note that Q has
cardinality at most 3d = q) that G3 has an edge-connected subset which satisfies the
following properties with probability at least 1− ε/2:
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(i) intersects every edge of C(I) with at least u cubes;

(ii) contains a cube that is edge-connected to a cube of U(I′), for all I′ ∈ Q.

Combining properties (IV), (V) and the previous paragraph we obtain

Pk(N)(C(I) is (n, u)-good | F(I−))

≥ P({G1 ⊃ G3} ∩ {G3 satisfies properties (i) and (ii)})
≥ 1− ε.

Therefore, (4.3.7) holds for the index I given that (4.3.8) holds for all indices I′ < I.
A recursive use of this argument – recall that (4.3.7) is valid for I0 (the smallest index
according to the ordering) – yields that (4.3.7) holds for all I. Taking I = ∅ in (4.3.7)
proves the lemma.

We are now able to conclude the proof of Theorem 4.3.2.

Proof of Theorem 4.3.2. Let p > pc(d) and consider a sequence (k(N))N≥2 such that
k(N)/Nd ≥ p, for all N ≥ 2. We get, using both Lemma 4.3.7 and Lemma 4.3.5, that
for any ε > 0 such that (1− ε)p > pc(d), there exists N0, depending on ε, such that

Pk(N)(percolation in Dn
k(N)) ≥ Pk(N)([0, 1]d is (n, u)-good) ≥ 1− ε, (4.3.10)

for N ≥ N0. It is well known (see e.g. [24]) that

{[0, 1]d is crossed by Dk(N)} =

∞⋂
n=1

{percolation in Dn
k(N)}.

Hence, taking the limit n→∞ in (4.3.10) yields that for ε > 0 small enough

Pk(N)([0, 1]d is crossed by Dk(N)) ≥ 1− ε, (4.3.11)

for N ≥ N0. Therefore,
θ(k(N), N, d)→ 1,

as N →∞.

4.3.3 Proof of Theorem 4.1.4

Proof of Theorem 4.1.4. We use the idea of the proof of Theorem 4.3.1 and the result
of Theorem 4.3.2. Fix some p0 such that pc(d) < p0 < p and set k(N) := bp0N

dc.
Consider the event F that in the GFP model with generator Y = Y (N, d) there exists
an infinite tree of retained subcubes such that each subcube in the tree contains at
least k(N) retained subcubes in the tree. Similar to the proof of Lemma 4.3.3, we
prove that P(F )→ 1 as N →∞. We then show that the law of Dk(N) is stochastically
dominated by the conditional law of DY , conditioned on the event F . By Theorem
4.3.2 we can then conclude that φ(Y (N, d), N, d)→ 1 as N →∞.

Consider the construction of DY . We will use the same definition of m-good as in
Section 4.3.1, that is, if a level-n cube is retained and contains at least k(N) retained
subcubes, we call this level-n cube 0-good. Recursively, we say that a level-n cube is
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(m+1)-good if it is retained and contains at least k(N) m-good level-(n+1) subcubes.
We call the unit cube ∞-good if it is m-good for every m ≥ 0. Define the following
events

Fm := {[0, 1]d is m-good},
F := {[0, 1]d is ∞-good}.

We will show that for every ε > 0 such that (1− ε)p > p0 there exists N0 = N0(ε)
such that, for all m ≥ 0,

P(Fm) > 1− ε, for all N ≥ N0. (4.3.12)

The proof of (4.3.12) is similar to the proof of Lemma 4.3.3. Let ε > 0 be such
that (1 − ε)p > p0. Take δ > 0 such that (1 − ε)p > p0 + δ. Then, take N0 so large
that

1− 1

4δ2N
> 1− ε/2 and (4.3.13)

P(Y ≥ pNd) > 1− ε/2, (4.3.14)

for all N ≥ N0. We prove that (4.3.12) holds for this N0 and all m ≥ 0, by induction
on m. Since k(N) = bp0N

dc ≤ pNd it follows from (4.3.14) that P(F0) > 1 − ε, for
all N ≥ N0.

Next, assume that (4.3.12) holds for some m ≥ 0. The probability that a level-1
cube is m-good, given that it is retained, is equal to P(Fm). It follows that, given that
the number of retained level-1 cubes equals y, the number of m-good level-1 cubes
has a binomial distribution with parameters y and P(Fm). By our choices for N0 and
δ we get

P(Fm+1) =
∑

y≥k(N)

P(X(y,P(Fm)) ≥ k(N)) P(Y = y)

≥ P(X(bpNdc,P(Fm)) ≥ p0N
d) P(Y ≥ bpNdc)

≥ P(X(bpNdc, 1− ε) ≥ p0N
d)(1− ε/2)

≥
(

1− VarX(bpNdc, 1− ε)
(p0 − (1− ε)p)2N2d

)
(1− ε/2)

≥
(

1− (1− ε)εpNd

δ2N2d

)
(1− ε/2)

≥
(

1− 1

4δ2Nd

)
(1− ε/2)

≥ (1− ε/2)(1− ε/2) > 1− ε,

for all N ≥ N0. Hence, the induction step is valid.
Analogously to the proof of Theorem 4.3.1 we use the event F =

⋂∞
m=1 Fm to

construct two random subsets D̃k(N) and D̃Y on a common probability space, with
the following properties:

(i) D̃k(N) ⊂ D̃Y ;
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(ii) the law of D̃Y is stochastically dominated by the conditional law of DY , condi-
tioned on the event F ;

(iii) the law of D̃k(N) is equal to the law of Dk(N).

This construction is the same (modulo replacing the binomial distribution with Y ) as
in the proof of Theorem 4.3.1 and is therefore omitted.

From properties (i)-(iii) and Theorem 4.3.2 we get

P([0, 1]d is crossed by DY (N,d)|F )

≥ P([0, 1]d is crossed by D̃Y (N,d))

≥ P([0, 1]d is crossed by D̃k(N))

= P([0, 1]d is crossed by Dk(N))→ 1,

as N →∞. Since (4.3.12) implies that P(F )→ 1 as N →∞, we obtain

P([0, 1]d is crossed by DY (N,d))→ 1,

as N →∞.

4.4 Proofs of the fat fractal results

In this section we prove our results concerning fat fractal percolation. First, we state
an elementary property of the fat fractal percolation model; it follows immediately
from Fubini’s theorem and we omit the proof.

Proposition 4.4.1. The expected Lebesgue measure of the limit set of fat fractal
percolation is given by

Eλ(Dfat) =

∞∏
n=1

pn.

4.4.1 Proof of Theorem 4.1.7

Since
∏∞
n=1 pn > 0 it follows from Proposition 4.4.1 that with positive probability the

limit set has positive Lebesgue measure given Dfat 6= ∅. Theorem 4.1.7 states that
the latter holds with probability 1.

Proof of Theorem 4.1.7. Let Zn denote the number of retained level-n cubes after
iteration step n and set Z0 := 1. Since the retention probabilities pn vary with n,
the process (Zn)n≥1 is a so-called branching process in a time-varying environment.
Following the notation of Lyons in [37] let Ln be a random variable, having the
distribution of Zn given that Zn−1 = 1. Note that Ln has a binomial distribution
with parameters Nd and pn.

Define the process (Wn)n≥1 by

Wn :=
Zn∏n

i=1 piN
d
.
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It is straightforward to show that (Wn)n≥1 is a martingale:

E[Wn|Wn−1] =
E[Zn|Zn−1]∏n

i=1 piN
d

=
Zn−1∏n
i=1 piN

d
E[Zn|Zn−1 = 1]

=
Zn−1pnN

d∏n
i=1 piN

d
= Wn−1.

The Martingale Convergence Theorem tells us that Wn converges almost surely to a
random variable W . Theorem 4.14 of [37] states that if

A := sup
n
||Ln||∞ <∞,

then W > 0 a.s. given non-extinction. It is clearly the case that A <∞, because Ln
can take at most the value Nd. Therefore, Wn converges to a random variable W
which is stricly positive a.s. given non-extinction.

The Lebesgue measure of the retained cubes at each iteration step n is equal to
Zn/N

dn. We have

λ(Dn
fat) =

Zn
Ndn

=

(∏n
i=1 piN

d
)
Wn

Ndn
=

(
n∏
i=1

pi

)
Wn. (4.4.1)

Letting n→∞ in (4.4.1) yields λ(Dfat) = (
∏∞
i=1 pi)W . Since

∏∞
i=1 pi > 0 and W > 0

a.s. given non-extinction, we get the desired result.

4.4.2 Proof of Theorem 4.1.8

We start with a heuristic strategy for the proof. For a fixed configuration ω ∈ Ω, let
us call a point x in the unit cube conditionally connected if the following property
holds: If we change ω by retaining all cubes that contain x, then x is contained in
a connected component larger than one point. We show that for almost all points x
it is the case that x is conditionally connected with probability 0 or 1. We define an
ergodic transformation T on the unit cube. The transformation T enables us to prove
that the probability for a point x to be conditionally connected has the same value
for λ-almost all x. From this we can then conclude that either the set of dust points
or the set of connected components contains all Lebesgue measure.

Proof of Theorem 4.1.8. First, we have to introduce some notation. Let U be the
collection of points in [0, 1]d not on the boundary of a subcube. For each x ∈ U
there exists a unique sequence (C(x1, . . . ,xn))n≥1 of cubes of the fractal process,
where xj ∈ Jd for all j, such that

⋂
n≥1 C(x1, . . . ,xn) = {x}. Therefore, we can

define an invertible transformation φ : U → (Jd)N by φ(x) = (x1,x2, . . .). For each
n ∈ N let µn be the uniform measure on (Xn,Fn), where Xn = Jd and Fn is the
power set of Xn. Let (X,F , µ) =

⊗∞
n=1(Xn,Fn, µn) be the product space. Since

φ : (U,B(U), λ) → (X,F , µ) is an invertible measure-preserving transformation, we
have that (X,F , µ) is by definition isomorphic to (U,B(U), λ). Here B(U) denotes
the Borel σ-algebra.

Next, we define the transformation T : U → U , which will play a crucial role
in the rest of the proof. Define the auxiliary shift transformation T ∗ : X → X by
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x

Tx

Figure 4.2: Illustration of the transformation T . Note that the relative position of x
in the level-1 cube is the same as the relative position of Tx in the unit cube.

T ∗((x1,x2,x3, . . .)) = (x2,x3, . . .), for (x1,x2, . . .) ∈ X. The transformation T ∗ is
measure preserving with respect to the measure µ and also ergodic, see for instance
[54]. Let T := φ−1 ◦ T ∗ ◦ φ be the induced transformation on U and note that T is
isomorphic to T ∗ and hence also ergodic. Informally, T sends a point x ∈ U to the
point Tx, in such a way that the relative position of Tx in the unit cube is the same
as the relative position of x in its level-1 cube C(x1); see Figure 4.2.

Recall that ω ∈ Ω denotes a particular realization of the fat fractal percolation
process. For x ∈ U , we define the following event.

Ax := {ω : if we set ω(C(x1, . . . ,xn)) = 1 for all n ≥ 1, then Cxfat 6= {x}} .

In other words, Ax consists of those configurations ω such that when we change the
configuration by retaining all C(x1, . . . ,xn), then in this new configuration, x is in
the same connected component as some y 6= x. Observe that

Ax ∩ {x ∈ Dfat} = {x ∈ Dc
fat}. (4.4.2)

It is easy to see that Ax is a tail event. Hence, by Kolmogorov’s 0-1 law we get
P(Ax) ∈ {0, 1} for all x ∈ U .

However, a priori it is not clear that for almost all x in the unit cube P(Ax) has
the same value. To this end, define the set V := {x ∈ U : P(Ax) = 0}. We will show
that λ(V ) ∈ {0, 1}. Recall that the relative position of Tx in the unit cube is the
same as the relative position of x in the level-1 cube C(x1). It is possible to construct
a coupling between the fractal process in the unit cube and the fractal process in
C(x1), given that C(x1) is retained, with the following property: For every cube C(I)
in C(x1), it is the case that if TC(I) is retained in the fractal process in the unit cube,
then C(I) is also retained in the fractal process in C(x1), given that C(x1) is retained.
It is straightforward that such a coupling exists since the retention probabilities pn
are non-decreasing in n. Hence,

P(ATx) ≤ P(Ax|C(x1) is retained). (4.4.3)
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Furthermore, since Ax is a tail event, we have

P(Ax) = P(Ax|C(x1) is retained). (4.4.4)

It follows from (4.4.3) and (4.4.4) that P(ATx) ≤ P(Ax) for all x. This implies that
V ⊂ T−1V . Because T is measure preserving it follows that

λ(V∆T−1V ) = λ(V \ T−1V ) + λ(T−1V \ V ) = 0 + λ(T−1V )− λ(V ) = 0.

Ergodicity of T now yields that λ(V ) ∈ {0, 1}.
Suppose λ(V ) = 0. Then P(x ∈ Dd

fat) = P({x ∈ Dfat} \ Ax) = 0 for almost all
x ∈ [0, 1]d, by (4.4.2). Applying Fubini’s theorem gives

Eλ(Dd
fat) =

∫
Ω

∫
[0,1]d

1Ddfat
(x, ω)dλdP

=

∫
[0,1]d

∫
Ω

1Ddfat
(x, ω)dP dλ

=

∫
[0,1]d

P(x ∈ Dd
fat)dλ = 0.

Therefore λ(Dd
fat) = 0 a.s. By Theorem 4.1.7 we have λ(Dc

fat) > 0 a.s. given non-
extinction.

Next suppose that λ(V ) = 1. Then with a similar argument we can show that
λ(Dc

fat) = 0 and λ(Dd
fat) > 0 a.s. given non-extinction.

4.4.3 Proof of Theorem 4.1.9

Proof of Theorem 4.1.9. (i) Suppose that Dfat has a non-empty interior with positive
probability. Then we have

0 < P(Dfat has non-empty interior)

= P(∃n, ∃i1, . . . , in : C(i1, . . . , in) ⊂ Dfat)

≤
∑

n,i1,...,in

P(C(i1, . . . , in) ⊂ Dfat).

Since we sum over countably many cubes, there must exist n and i1, . . . , in such that
P(C(i1, . . . , in) ⊂ Dfat) > 0. Hence, by translation invariance, P(C(i1, . . . , in) ⊂
Dfat) > 0 for this specific n and all i1, . . . , in. We can apply the FKG inequality to
obtain P(Dfat = [0, 1]d) = P(C(i1, . . . , in) ⊂ Dfat ∀i1, . . . , in) > 0. Since P(Dfat =

[0, 1]d) =
∏∞
n=1 p

Ndn

n , this proves the first part of the theorem.

(ii) Suppose
∏∞
n=1 p

Nn

n > 0. Then for each x ∈ [0, 1]d−1 we have P({x} × [0, 1] ⊂
Dfat) ≥

∏∞
n=1 p

Nn

n > 0. Let λd−1 denote (d − 1)-dimensional Lebesgue measure.
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Applying Fubini’s theorem gives

Eλd−1({x ∈ [0, 1]d−1 : {x} × [0, 1] ⊂ Dfat})

=

∫
Ω

∫
[0,1]d−1

1{x}×[0,1]⊂Dfat
dλd−1dP

=

∫
[0,1]d−1

∫
Ω

1{x}×[0,1]⊂Dfat
dP dλd−1

=

∫
[0,1]d−1

P({x} × [0, 1] ⊂ Dfat)dλd−1 > 0.

Hence,
λd−1({x ∈ [0, 1]d−1 : {x} × [0, 1] ⊂ Dfat}) > 0 (4.4.5)

with positive probability. Observe that

Dc
fat ⊃

⋃
x∈[0,1]d−1:{x}×[0,1]⊂Dfat

{x} × [0, 1].

In particular,

λ(Dc
fat) ≥ λd−1({x ∈ [0, 1]d−1 : {x} × [0, 1] ⊂ Dfat}).

From (4.4.5) we conclude that λ(Dc
fat) > 0 with positive probability. It now follows

from Theorem 4.1.8 that the Lebesgue measure of the dust set is 0 a.s.

(iii) Next assume that
∏∞
n=1 p

Ndn

n > 0. For each level n, we have P(Dn
fat =

Dn−1
fat ) ≥ pNdnn . Since

∏∞
n=1 p

Ndn

n > 0 is equivalent to
∑∞
n=1(1− pNdnn ) <∞, we have

∞∑
n=1

P(Dn
fat 6= Dn−1

fat ) ≤
∞∑
n=1

(1− pNdnn ) <∞.

Applying the Borel-Cantelli lemma gives that, with probability 1, {Dn
fat 6= Dn−1

fat }
occurs for only finitely many n. Hence, with probability 1 there exists an n such that
Dfat can be written as the union of level-n cubes.

4.4.4 Proof of Theorem 4.1.11

Proof of Theorem 4.1.11. (iii)⇒ (ii). Trivial.
(ii) ⇒ (i). Suppose P(x connected to y) > 0 for all x, y ∈ U , for some set

U ⊂ [0, 1]2 with λ(U) > 0. Fix y ∈ U . By Fubini’s theorem

Eλ(Dc
fat) =

∫
Ω

∫
[0,1]2

1Dcfat
(x, ω)dλ(x)dP(ω)

=

∫
[0,1]2

∫
Ω

1Dcfat
(x, ω)dP(ω)dλ(x)

=

∫
[0,1]2

P(x ∈ Dc
fat)dλ(x)

≥
∫
U\{y}

P(x connected to y)dλ(x) > 0.
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[0,1] 2

V

H

H

1 V2

2

1

S(x,1/2n)

Figure 4.3: Realization of the event Γx.

Hence λ(Dc
fat) > 0 with positive probability. By Theorem 4.1.8 it follows that

λ(Dc
fat) > 0 a.s. given non-extinction of the fat fractal process.

(i) ⇒ (iii). Next suppose that λ(Dc
fat) > 0 a.s. given non-extinction of the fat

fractal process. For points x ∈ [0, 1]2 not on the boundary of a subcube, define the
event Ax as in the proof of Theorem 4.1.8. It follows from the proof of Theorem 4.1.8
that P(Ax) = 1 for all x ∈ V , for some set V ⊂ [0, 1]2 with λ(V ) = 1. By (4.4.2) we
have for all x ∈ V

P(x ∈ Dc
fat) = P(x ∈ Dfat) > 0.

Let x ∈ V . Then

0 < P(x ∈ Dc
fat) ≤

∞∑
n=1

P(diam(Cxfat) >
1
n ),

where diam(Cxfat) denotes the diameter of the set Cxfat. So there exists a natural
number nx such that P(diam(Cxfat) >

1
nx

) > 0. Hence

P(x connected to S(x, 1
2nx

)) > 0,

where S(x, 1
2nx

) is a circle centered at x with radius 1
2nx

. Write x = (x1, x2) and

define the following subsets of R2

H1 = [0, 1]× [x2 − 1
4nx

, x2],

H2 = [0, 1]× [x2, x2 + 1
4nx

],

V1 = [x1 − 1
4nx

, x1]× [0, 1],

V2 = [x1, x1 + 1
4nx

]× [0, 1].
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Note that for every x ∈ [0, 1]2 it is the case that at least one horizontal strip Hi and
at least one vertical strip Vj is entirely contained in [0, 1]2. Define the event Γx by

Γx =
⋂

i∈{1,2}:Hi⊂[0,1]2

{horizontal crossing in Hi}

∩
⋂

j∈{1,2}:Vj⊂[0,1]2

{vertical crossing in Vj}.

See Figure 4.3 for an illustration of the event Γx. From Theorem 2 in [16] it follows
that in the MFP model with parameter p ≥ pc(N, 2), the limit setDp connects the left-
hand side of [0, 1]2 with its right-hand side with positive probability. It then follows
from the RSW lemma (e.g. Lemma 5.1 in [20]) and the FKG inequality that Pp(Γx) >
0. Let An denote the event of complete retention until level n, i.e. ω(C(I)) = 1 for all
I ∈ J (n−1). Since

∏∞
n=1 pn > 0 there exists an integer n0 such that pn ≥ pc(N, 2) for

all n ≥ n0. Hence, the probability measure Pfat(·|An0
) dominates Ppc(N,2)(·). Since

Pfat(An0
) > 0 it follows that Pfat(Γx) > 0.

Observe that for x, y ∈ V

{x connected to y}
⊃ {x connected to S(x, 1

2nx
)} ∩ Γx ∩ {y connected to S(y, 1

2ny
)} ∩ Γy.

Since all four events on the right-hand side are increasing and have positive proba-
bility, we can apply the FKG inequality to conclude that for all x, y ∈ V we have
P(x connected to y) > 0.
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Chapter 5

Random walk loop soups and
conformal loop ensembles

This chapter is based on the paper [52] by Van de Brug, Camia, and Lis.

5.1 Introduction

Several interesting models of statistical mechanics, such as percolation and the Ising
and Potts models, can be described in terms of clusters. In two dimensions and at the
critical point, the scaling limit geometry of the boundaries of such clusters is known
(see [13–15,19,49]) or conjectured (see [28,50]) to be described by some member of the
one-parameter family of Schramm-Loewner evolutions (SLEκ with κ > 0) and related
conformal loop ensembles (CLEκ with 8/3 < κ < 8). What makes SLEs and CLEs
natural candidates is their conformal invariance, a property expected of the scaling
limit of two-dimensional statistical mechanical models at the critical point. SLEs
can be used to describe the scaling limit of single interfaces; CLEs are collections
of loops and are therefore suitable to describe the scaling limit of the collection of
all macroscopic boundaries at once. For example, the scaling limit of the critical
percolation exploration path is SLE6 [14,49], and the scaling limit of the collection of
all critical percolation interfaces in a bounded domain is CLE6 [13, 15].

For 8/3 < κ ≤ 4, CLEκ can be obtained [48] from the Brownian loop soup,
introduced by Lawler and Werner [32] (see Section 5.2 for a definition), as we explain
below. A sample of the Brownian loop soup in a bounded domain D with intensity λ >
0 is the collection of loops contained in D from a Poisson realization of a conformally
invariant intensity measure λµ. When λ ≤ 1/2, the loop soup is composed of disjoint
clusters of loops [48] (where a cluster is a maximal collection of loops that intersect
each other). When λ > 1/2, there is a unique cluster [48] and the set of points not
surrounded by a loop is totally disconnected (see [6]). Furthermore, when λ ≤ 1/2,
the outer boundaries of the outermost loop soup clusters are distributed like conformal
loop ensembles (CLEκ) [47, 48, 55] with 8/3 < κ ≤ 4. More precisely, if 8/3 < κ ≤ 4,
then 0 < (3κ − 8)(6 − κ)/4κ ≤ 1/2 and the collection of all outer boundaries of the
outermost clusters of the Brownian loop soup with intensity λ = (3κ−8)(6−κ)/4κ is

89
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distributed like CLEκ [48]. For example, the continuum scaling limit of the collection
of all macroscopic outer boundaries of critical Ising spin clusters is conjectured to
correspond to CLE3 and to a Brownian loop soup with λ = 1/4. Note that the
relation between λ and κ mentioned above is not exactly as stated in [48]; it has
become apparent recently (see e.g. the discussion in the introduction of [36]) that
there is a mistake in [48,55].

In [31] Lawler and Trujillo Ferreras introduced the random walk loop soup as a
discrete version of the Brownian loop soup, and showed that, under Brownian scaling,
it converges in an appropriate sense to the Brownian loop soup. The authors of [31]
focused on individual loops, showing that, with probability going to 1 in the scaling
limit, there is a one-to-one correspondence between “large” lattice loops from the
random walk loop soup and “large” loops from the Brownian loop soup such that
corresponding loops are close.

In [33] Le Jan showed that the random walk loop soup has remarkable connections
with the discrete Gaussian free field, analogous to Dynkin’s isomorphism [22,23] (see
also [9]). Such considerations have prompted an extensive analysis of more general
versions of the random walk loop soup (see e.g. [34, 51]).

As explained above, the connection between the Brownian loop soup and SLE/CLE
goes through its loop clusters and their boundaries. In view of this observation, it is
interesting to investigate whether the random walk loop soup converges to the Brow-
nian loop soup in terms of loop clusters and their boundaries, not just in terms of
individual loops, as established by Lawler and Trujillo Ferreras [31]. This is a natural
and nontrivial question, due to the complex geometry of the loops involved and of
their mutual overlaps.

In this chapter, we consider random walk loop soups from which the “vanish-
ingly small” loops have been removed and establish convergence of their clusters and
boundaries, in the scaling limit, to the clusters and boundaries of the corresponding
Brownian loop soups (see Figure 5.1). We work in the same set-up as [31], which in
particular means that the number of loops of the random walk loop soup after cut-off
diverges in the scaling limit. We use tools ranging from classical Brownian motion
techniques to recent loop soup results. Indeed, properties of planar Brownian motion
as well as properties of CLEs play an important role in the proofs of our results.

5.2 Definitions and main result

We recall the definitions of the Brownian loop soup and the random walk loop soup.
A curve γ is a continuous function γ : [0, tγ ] → C, where tγ < ∞ is the time length
of γ. A loop is a curve with γ(0) = γ(tγ). A planar Brownian loop of time length
t0 started at z is the process z + Bt − (t/t0)Bt0 , 0 ≤ t ≤ t0, where B is a planar

Brownian motion started at 0. The Brownian bridge measure µ]z,t0 is a probability
measure on loops, induced by a planar Brownian loop of time length t0 started at z.
The (rooted) Brownian loop measure µ is a measure on loops, given by

µ(C) =

∫
C

∫ ∞
0

1

2πt20
µ]z,t0(C)dt0dA(z),

where C is a collection of loops and A denotes two-dimensional Lebesgue measure,
see Remark 5.28 of [29]. For a domain D let µD be µ restricted to loops which stay
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random walk
loop soup loop soup

Brownian

CLE
cluster

boundaries

Figure 5.1: Schematic diagram of relations between discrete and continuous loop
soups and their cluster boundaries. Horizontal arrows indicate a scaling limit. In this
chapter we show the convergence corresponding to the bottom horizontal arrow.

in D.
The (rooted) Brownian loop soup with intensity λ ∈ (0,∞) in D is a Poissonian

realization from the measure λµD. The Brownian loop soup introduced by Lawler
and Werner [32] is obtained by forgetting the starting points (roots) of the loops. The
geometric properties we study in this chapter are the same for both the rooted and
the unrooted version of the Brownian loop soup. Let L be a Brownian loop soup with
intensity λ in a domain D, and let Lt0 be the collection of loops in L with time length
at least t0.

The (rooted) random walk loop measure µ̃ is a measure on nearest neighbor loops
in Z2, which we identify with loops in the complex plane by linear interpolation. For
a loop γ̃ in Z2, we define

µ̃(γ̃) =
1

tγ̃
4−tγ̃ ,

where tγ̃ is the time length of γ̃, i.e. its number of steps. The (rooted) random walk
loop soup with intensity λ is a Poissonian realization from the measure λµ̃. For a
domain D and positive integer N , let L̃N be the collection of loops γ̃N defined by
γ̃N (t) = N−1γ̃(2N2t), 0 ≤ t ≤ tγ̃/(2N

2), where γ̃ are the loops in a random walk
loop soup with intensity λ which stay in ND. Note that the time length of γ̃N is
tγ̃/(2N

2). Let L̃t0N be the collection of loops in L̃N with time length at least t0.
We will often identify curves and processes with their range in the complex plane,

and a collection of curves C with the set in the plane
⋃
γ∈C γ. For a bounded set A,

we write ExtA for the exterior of A, i.e. the unique unbounded connected component
of C \ A. By HullA, we denote the hull of A, which is the complement of ExtA. We
write ∂oA for the topological boundary of ExtA, called the outer boundary of A. Note
that ∂A ⊃ ∂oA = ∂ExtA = ∂HullA. For sets A,A′, the Hausdorff distance between
A and A′ is given by

dH(A,A′) = inf{δ > 0 : A ⊂ (A′)δ and A′ ⊂ Aδ},

where Aδ =
⋃
x∈AB(x; δ) with B(x; δ) = {y : |x− y| < δ}.

Let A be a collection of loops in a domain D. A chain of loops is a sequence of
loops, where each loop intersects the loop which follows it in the sequence. We call
C ⊂ A a subcluster of A if each pair of loops in C is connected via a finite chain
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of loops from C. We say that C is a finite subcluster if it contains a finite number
of loops. A subcluster which is maximal in terms of inclusion is called a cluster. A
cluster C of A is called outermost if there exists no cluster C ′ of A such that C ′ 6= C
and HullC ⊂ HullC ′. The carpet of A is the set D \ ⋃C(HullC \ ∂oC), where the
union is over all outermost clusters C of A. For collections of subsets of the plane
A,A′, the induced Hausdorff distance is given by

d∗H(A,A′) = inf{δ > 0 : ∀A ∈ A∃A′ ∈ A′ such that dH(A,A′) < δ,

and ∀A′ ∈ A′ ∃A ∈ A such that dH(A,A′) < δ}.

The main result of this chapter is the following theorem:

Theorem 5.2.1. Let D be a bounded, simply connected domain, take λ ∈ (0, 1/2]
and 16/9 < θ < 2. As N →∞,

(i) the collection of hulls of all outermost clusters of L̃Nθ−2

N converges in distribution
to the collection of hulls of all outermost clusters of L, with respect to d∗H ,

(ii) the collection of outer boundaries of all outermost clusters of L̃Nθ−2

N converges
in distribution to the collection of outer boundaries of all outermost clusters
of L, with respect to d∗H ,

(iii) the carpet of L̃Nθ−2

N converges in distribution to the carpet of L, with respect to
dH .

Note that since θ < 2, L̃Nθ−2

N contains loops of time length, and hence also diame-

ter, arbitrarily small as N →∞, so the number of loops in L̃Nθ−2

N diverges as N →∞.
Theorem 5.2.1 has an analogue for the random walk loop soup with killing and the
massive Brownian loop soup as defined in [12]; our proof extends to that case.

As an immediate consequence of Theorem 5.2.1 and the loop soup construction
of conformal loop ensembles by Sheffield and Werner [48], we have the following
corollary:

Corollary 5.2.2. Let D be a bounded, simply connected domain, take λ ∈ (0, 1/2]
and 16/9 < θ < 2. Let κ ∈ (8/3, 4] be such that λ = (3κ− 8)(6− κ)/4κ. As N →∞,

the collection of outer boundaries of all outermost clusters of L̃Nθ−2

N converges in
distribution to CLEκ, with respect to d∗H .

Note that the relation between λ and κ in Corollary 5.2.2 is not exactly as stated
in [48]. It has become apparent recently (see e.g. the discussion in the introduction
of [36]) that in [48, 55] a factor 1/2 is missing in the relation between the loop soup
intensity and the CLE parameter. In particular, this implies that the critical intensity
of the Brownian loop soup is not λ = 1 but λ = 1/2.

We conclude this section by giving an outline of the chapter and explaining the
structure of the proof of Theorem 5.2.1. The largest part of the proof is to show that,
for large N , with high probability, for each large cluster C of L there exists a cluster

C̃N of L̃Nθ−2

N such that dH(ExtC,ExtC̃N ) is small. We will prove this fact in three
steps.

First, let C be a large cluster of L. We choose a finite subcluster C ′ of C such that
dH(ExtC,ExtC ′) is small. A priori, it is not clear that such a finite subcluster exists
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Figure 5.2: A cluster whose exterior is not well-approximated by the exterior of any
finite subcluster.

– see, e.g., Figure 5.2 which depicts a cluster containing two disjoint infinite chains
of loops at Euclidean distance zero from each other. A proof that, almost surely, a
finite subcluster with the desired property exists is given in Section 5.4, using results
from Section 5.3. The latter section contains a number of definitions and preliminary
results used in the rest of the chapter.

Second, we approximate the finite subcluster C ′ by a finite subcluster C̃ ′N of

L̃Nθ−2

N . Here we use Corollary 5.4 of Lawler and Trujillo Ferreras [31], which gives
that, with probability tending to 1, there is a one-to-one correspondence between

loops in L̃Nθ−2

N and loops in LNθ−2

such that corresponding loops are close. To prove
that dH(ExtC ′,ExtC̃ ′N ) is small, we need results from Section 5.3 and the fact that a
planar Brownian loop has no “touchings” in the sense of Definition 5.3.1 below. The
latter result is proved in Section 5.5.

Third, we let C̃N be the full cluster of L̃Nθ−2

N that contains C̃ ′N . In Section 5.6
we prove an estimate which implies that, with high probability, for non-intersecting

loops in LNθ−2

the corresponding loops in L̃Nθ−2

N do not intersect. We deduce from
this that, for distinct subclusters C̃ ′1,N and C̃ ′2,N , the corresponding clusters C̃1,N and

C̃2,N are distinct. We use this property to conclude that dH(ExtC,ExtC̃N ) is small.

5.3 Preliminary results

In this section we give precise definitions and rigorous proofs of deterministic results
which are important tools in the proof of our main result. Let γN be a sequence of
curves converging uniformly to a curve γ, i.e. d∞(γN , γ)→ 0 as N →∞, where

d∞(γ, γ′) = sup
s∈[0,1]

|γ(stγ)− γ′(stγ′)|+ |tγ − tγ′ |.

The distance d∞ is a natural distance on the space of curves mentioned in Section
5.1 of [29]. We will identify topological conditions that, imposed on γ (and γN ), will
yield convergence in the Hausdorff distance of the exteriors, outer boundaries and
hulls of γN to the corresponding sets defined for γ. Note that, in general, uniform
convergence of the curves does not imply convergence of any of these sets. We define
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Figure 5.3: A curve with a touching, and an approximating curve (dashed).

a notion of touching (see Figure 5.3) and prove that if γ has no touchings then the
desired convergence follows:

Definition 5.3.1. We say that a curve γ has a touching (s, t) if 0 ≤ s < t ≤ tγ ,
γ(s) = γ(t) and there exists δ > 0 such that for all ε ∈ (0, δ), there exists a curve γ′

with tγ = tγ′ , such that d∞(γ, γ′) < ε and γ′[s−, s+] ∩ γ′[t−, t+] = ∅, where (s−, s+)
is the largest subinterval of [0, tγ ] such that s− ≤ s ≤ s+ and γ′(s−, s+) ⊂ B(γ(s); δ),
and t−, t+ are defined similarly using t instead of s.

Theorem 5.3.2. Let γN , γ be curves such that d∞(γN , γ) → 0 as N → ∞, and γ
has no touchings. Then,

dH(ExtγN ,Extγ)→ 0, dH(∂oγN , ∂oγ)→ 0, and dH(HullγN ,Hullγ)→ 0.

To prove the main result of this chapter, we will also need to deal with similar
convergence issues for sets defined by collections of curves. For two collections of
curves C,C ′ let

d∗∞(C,C ′) = inf{δ > 0 : ∀γ ∈ C ∃γ′ ∈ C ′ such that d∞(γ, γ′) < δ,

and ∀γ′ ∈ C ′ ∃γ ∈ C such that d∞(γ, γ′) < δ}.

We will also need a modification of the notion of touching:

Definition 5.3.3. Let γ1 and γ2 be curves. We say that the pair γ1, γ2 has a mutual
touching (s, t) if 0 ≤ s ≤ tγ1 , 0 ≤ t ≤ tγ2 , γ1(s) = γ2(t) and there exists δ > 0 such
that for all ε ∈ (0, δ), there exist curves γ′1, γ′2 with tγ1 = tγ′1 , tγ2 = tγ′2 , such that
d∞(γ1, γ

′
1) < ε, d∞(γ2, γ

′
2) < ε and γ′1[s−, s+] ∩ γ′2[t−, t+] = ∅, where (s−, s+) is the

largest subinterval of [0, tγ1
] such that s− ≤ s ≤ s+ and γ′1(s−, s+) ⊂ B(γ1(s); δ), and

t−, t+ are defined similarly using γ2 and t, instead of γ1 and s.

Definition 5.3.4. We say that a collection of curves has a touching if it contains a
curve that has a touching or it contains a pair of distinct curves that have a mutual
touching.

The next result is an analog of Theorem 5.3.2.
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Theorem 5.3.5. Let CN , C be collections of curves such that d∗∞(CN , C) → 0 as
N →∞, and C contains finitely many curves and C has no touchings. Then,

dH(ExtCN ,ExtC)→ 0, dH(∂oCN , ∂oC)→ 0, and dH(HullCN ,HullC)→ 0.

The remainder of this section is devoted to proving Theorems 5.3.2 and 5.3.5. We
will first identify a general condition for the convergence of exteriors, outer boundaries
and hulls in the setting of arbitrary bounded subsets of the plane. We will prove
that if a curve does not have any touchings, then this condition is satisfied and
hence Theorem 5.3.2 follows. At the end of the section, we will show how to obtain
Theorem 5.3.5 using similar arguments.

Proposition 5.3.6. Let AN , A be bounded subsets of the plane such that dH(AN , A)→
0 as N →∞. Suppose that for every δ > 0 there exists N0 such that, for all N > N0,
ExtAN ⊂ (ExtA)δ. Then,

dH(ExtAN ,ExtA)→ 0, dH(∂oAN , ∂oA)→ 0, and dH(HullAN ,HullA)→ 0.

To prove Proposition 5.3.6, we will first prove that one of the inclusions re-
quired for the convergence of exteriors is always satisfied under the assumption that
dH(AN , A) → 0. For sets A,A′ let dE(A,A′) be the Euclidean distance between A
and A′.

Lemma 5.3.7. Let AN , A be bounded sets such that dH(AN , A) → 0 as N → ∞.
Then, for every δ > 0, there exists N0 such that for all N > N0, ExtA ⊂ (ExtAN )δ.

Proof. Suppose that the desired inclusion does not hold. This means that there
exists δ > 0 such that, after passing to a subsequence, ExtA 6⊂ (ExtAN )δ for all N .
This is equivalent to the existence of xN ∈ ExtA, such that dE(xN ,ExtAN ) ≥ δ.
Since dH(AN , A) → 0 and the sets are bounded, the sequence xN is bounded and
we can assume that xN → x ∈ ExtA when N → ∞. It follows that for N large
enough, dE(x,ExtAN ) > δ/2 and hence B(x; δ/2) does not intersect ExtAN . We
will show that this leads to a contradiction. To this end, note that since x ∈ ExtA,
there exists y ∈ ExtA such that |x − y| < δ/4. Furthermore, ExtA is an open
connected subset of C, and hence it is path connected. This means that there exists
a continuous path connecting y with ∞ which stays within ExtA. We denote by ℘
its range in the complex plane. Note that dE(℘,A) > 0. For N sufficiently large,
dH(AN , A) < dE(℘,A) and so AN does not intersect ℘. This implies that AN does
not disconnect y from ∞. Hence, y ∈ ExtAN and B(x; δ/2) intersects ExtAN for N
large enough, which is a contradiction. This completes the proof.

Lemma 5.3.8. Let A,A′ be bounded sets and let δ > 0. If dH(A,A′) < δ and
ExtA ⊂ (ExtA′)δ, then ∂oA ⊂ (∂oA

′)2δ and HullA′ ⊂ (HullA)2δ.

Proof. We start with the first inclusion. From the assumption, it follows that A ⊂
(A′)δ and ExtA ⊂ (ExtA′)2δ. Take x ∈ ∂oA. Since ∂oA ⊂ A ⊂ (A′)δ ⊂ (HullA′)δ,
we have that B(x; δ) ∩ HullA′ 6= ∅. Since ∂oA ⊂ ExtA ⊂ (ExtA′)2δ, we have that
B(x; 2δ) ∩ ExtA′ 6= ∅. The ball B(x; 2δ) is connected and intersects both ExtA′ and
its complement HullA′. This implies that B(x; 2δ) ∩ ∂oA

′ 6= ∅. The choice of x was
arbitrary, and hence ∂oA ⊂ (∂oA

′)2δ.
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We are left with proving the second inclusion. From the assumption, it follows
that A′ ⊂ Aδ and ExtA ⊂ (ExtA′)δ. Since ∂oA

′ ⊂ A′ ⊂ Aδ ⊂ (HullA)δ, we have
that (∂oA

′)δ ⊂ (HullA)2δ. Since ExtA ⊂ (ExtA′)δ = ExtA′ ∪ (∂oA
′)δ, by taking

complements we have that HullA′ \ (∂oA
′)δ ⊂ HullA ⊂ (HullA)2δ. By taking the

union with (∂oA
′)δ, we obtain that HullA′ ⊂ (HullA)2δ.

Proof of Proposition 5.3.6. It follows from Lemmas 5.3.7 and 5.3.8.

Remark 5.3.9. In the proof of Theorem 5.2.1, we will use equivalent formulations of
Theorem 5.3.5 and Lemma 5.3.7 in terms of metric rather than sequential convergence.
The equivalent formulation of Lemma 5.3.7 is as follows: For any bounded set A and
δ > 0, there exists ε > 0 such that if dH(A,A′) < ε, then ExtA ⊂ (ExtA′)δ. The
equivalent formulation of Theorem 5.3.5 is similar.

Without loss of generality, from now till the end of this section, we assume that
all curves have time length 1 (this can always be achieved by a linear time change).

Definition 5.3.10. We say that s, t ∈ [0, 1] are δ-connected in a curve γ if there
exists an open ball B of diameter δ such that γ(s) and γ(t) are connected in γ ∩B.

Lemma 5.3.11. Let γN , γ be curves such that d∞(γN , γ)→ 0 as N →∞, and γ has
no touchings. Then for any δ > 0 and s, t which are δ-connected in γ, there exists N0

such that s, t are 4δ-connected in γN for all N > N0.

Proof. Fix δ > 0. If the diameter of γ is at most δ, then it is enough to take N0, such
that d∞(γN , γ) < δ for N > N0.

Otherwise, let s, t ∈ [0, 1] be δ-connected in γ and let x be such that γ(s) and
γ(t) are in the same connected component of γ ∩B(x; δ/2). We say that I = [a, b] ⊂
[0, 1] defines an excursion of γ from ∂B(x; δ) to B(x; δ/2) if I is a maximal interval
satisfying

γ(a, b) ⊂ B(x; δ) and γ(a, b) ∩B(x; δ/2) 6= ∅.

Note that if [a, b] defines an excursion, then the diameter of γ[a, b] is at least δ/2. Since
γ is uniformly continuous, it follows that there are only finitely many excursions. Let
Ii = [ai, bi], i = 1, 2, . . . , k, be the intervals which define them.

It follows that γ ∩B(x; δ/2) ⊂ ⋃ki=1 γ[Ii], and hence γ(s) and γ(t) are in the same

connected component of
⋃k
i=1 γ[Ii]. If s, t ∈ Ii for some i, then it is enough to take N0

such that d∞(γN , γ) < δ for N > N0, and the claim of the lemma follows. Otherwise,
using the fact that γ[Ii] are closed connected sets, one can reorder the intervals in
such a way that s ∈ I1, t ∈ Il, and γ[Ii] ∩ γ[Ii+1] 6= ∅ for i = 1, . . . , l − 1. Let (si, ti)
be such that si ∈ Ii, ti ∈ Ii+1, and γ(si) = γ(ti) = zi. Since (si, ti) is not a touching,
we can find εi ∈ (0, δ) such that γ′(si) is connected to γ′(ti) in γ′ ∩B(zi; δ) for all γ′

with d(γ, γ′) < εi. Hence, if N0 is such that d(γN , γ) < min{ε, δ} for N > N0, where

ε = mini εi, then γN (s) and γN (t) are connected in
⋃l
i=1 γN [Ii]∪(γN ∩

⋃l−1
i=1B(zi; δ)),

and therefore also in γN ∩B(x; 2δ).

Lemma 5.3.12. If γ is a curve, then there exists a loop whose range is ∂oγ and
whose winding around each point of Hullγ \ ∂oγ is equal to 2π.
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Proof. Let D′ = {x ∈ C : |x| > 1}. By the proof of Theorem 1.5(ii) of [10], there
exists a one-to-one conformal map ϕ from D′ onto Extγ which extends to a continuous
function ϕ : D′ → Extγ, and such that ϕ[∂D′] = ∂oγ. Let γr(t) = ϕ(eit2π(1 + r))
for t ∈ [0, 1] and r ≥ 0. It follows that the range of γ0 is ∂oγ. Moreover, since ϕ is
one-to-one, γr is a simple curve for r > 0 and hence its winding around every point
of Hullγ \ ∂oγ is equal to 2π. Since d∞(γ0, γr) → 0 when r → 0, the winding of γ0

around every point of Hullγ \ ∂oγ is also equal to 2π.

Lemma 5.3.13. Let γN , γ be curves such that d∞(γN , γ) → 0 as N → ∞. Suppose
that for any δ > 0 and s, t which are δ-connected in γ, there exists N0 such that s, t
are 4δ-connected in γN for all N > N0. Then, for every δ > 0, there exists N0 such
that for all N > N0, ExtγN ⊂ (Extγ)δ.

Proof. Fix δ > 0. By Lemma 5.3.12, let γ0 be a loop whose range is ∂oγ and whose
winding around each point of Hullγ \ ∂oγ equals 2π. Let

0 = t0 < t1 < . . . < tl = 1,

be a sequence of times satisfying

ti+1 = inf{t ∈ [ti, 1] : |γ0(t)− γ0(ti)| = δ/32
}

for i = 0, . . . , l − 2,

and |γ0(t)−γ0(tl−1)| < δ/32 for all t ∈ [tl−1, 1). This is well defined, i.e. l <∞, since
γ0 is uniformly continuous. Note that ti and ti+1 are δ/8-connected in γ0. For each ti,
we choose a time τi, such that γ(τi) = γ0(ti) and τl = τ0. It follows that τi and τi+1

are δ/8-connected in γ. Let Ni be so large that τi and τi+1 are δ/2-connected in γN
for all N > Ni, and let M = maxiNi. The existence of such Ni is guaranteed by the
assumption of the lemma.

Let M ′ > M be such that d∞(γN , γ) < δ/16 for all N > M ′. Take N > M ′. We
will show that ExtγN ⊂ (Extγ)δ. Suppose by contradiction, that x ∈ ExtγN ∩ (C \
(Extγ)δ) = ExtγN ∩ (Hullγ \ (∂oγ)δ). Since ExtγN is open and connected, it is path
connected and there exists a continuous path ℘ connecting x with ∞ and such that
℘ ⊂ ExtγN .

We will construct a loop γ∗ which is contained in C \ ℘, and which disconnects x
from ∞. This will yield a contradiction. By the definition of M , for i = 0, . . . , l − 1,
there exists an open ball Bi of diameter δ/2, such that γN (τi) and γN (τi+1) are
connected in γN ∩ Bi, and hence also in Bi \ ℘. Since the connected components of
Bi \ ℘ are open, they are path connected and there exists a curve γ∗i which starts at
γN (τi), ends at γN (τi+1), and is contained in Bi \ ℘. By concatenating these curves,
we construct the loop γ∗, i.e.

γ∗(t) = γ∗i
( t− ti
ti+1 − ti

)
for t ∈ [ti, ti+1], i = 0, . . . , l − 1.

By construction, γ∗ ⊂ C \ ℘. We will now show that γ∗ disconnects x from
∞ by proving that its winding around x equals 2π. By the definition of ti+1,
γ0(ti, ti+1) ⊂ B(γ0(ti); δ/16). Since d∞(γN , γ) < δ/16 and γ0(ti) = γ(τi), it follows
that γ0(ti, ti+1) ⊂ B(γN (τi); δ/8). By the definition of γ∗i , γ∗i ⊂ Bi ⊂ B(γN (τi); δ/2).
Combining these two facts, we conclude that d∞(γ0, γ

∗) < 5δ/8. Since the winding
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of γ0 around every point of Hullγ \ ∂oγ is equal to 2π, and since x ∈ Hullγ and
dE(x, γ0) ≥ δ, the winding of γ∗ around x is also equal to 2π. This means that γ∗

disconnects x from ∞, and hence ℘ ∩ γ∗ 6= ∅, which is a contradiction.

Proof of Theorem 5.3.2. It is enough to use Proposition 5.3.6, Lemma 5.3.11 and
Lemma 5.3.13.

Proof of Theorem 5.3.5. The proof follows similar steps as the proof of Theorem 5.3.2.
To adapt Lemma 5.3.11 to the setting of collections of curves, it is enough to notice
that a finite collection of nontrivial curves, when intersected with a ball of suffi-
ciently small radius, looks like a single curve intersected with the ball. To generalize
Lemma 5.3.13, it suffices to notice that the outer boundary of each connected com-
ponent of C is given by a curve as in Lemma 5.3.12.

5.4 Finite approximation of a Brownian loop soup
cluster

Let L be a Brownian loop soup with intensity λ ∈ (0, 1/2] in a bounded, simply
connected domain D. The following theorem is the main result of this section.

Theorem 5.4.1. Almost surely, for any cluster C of L, there exists a sequence of
finite subclusters CN of C such that as N →∞,

dH(ExtCN ,ExtC)→ 0, dH(∂oCN , ∂oC)→ 0, and dH(HullCN ,HullC)→ 0.

We will need the following result.

Lemma 5.4.2. Almost surely, for each cluster C of L, there exists a sequence of
finite subclusters CN increasing to C (i.e. CN ⊂ CN+1 for all N and

⋃
N CN = C),

and a sequence of loops `N : [0, 1]→ C converging uniformly to a loop ` : [0, 1]→ C,
such that the range of `N is equal to CN , and hence the range of ` is equal to C.

Proof. This follows from the proof of Lemma 9.7 in [48]. Note that in [48], a cluster
C is replaced by the collection of simple loops η given by the outer boundaries of
γ ∈ C. However, the same argument works also for C and the loops γ.

To prove Theorem 5.4.1, we will show that the loops `N , ` from Lemma 5.4.2 satisfy
the conditions of Lemma 5.3.13. Then, using Proposition 5.3.6 and Lemma 5.3.13,
we obtain Theorem 5.4.1. We will first prove some necessary lemmas.

Lemma 5.4.3. Almost surely, for all γ ∈ L and all subclusters C of L such that γ
does not intersect C, it holds that dE(γ,C) > 0.

Proof. Fix k and let γk be the loop in L with k-th largest diameter. Using an argument
similar to that in Lemma 9.2 of [48], one can prove that, conditionally on γk, the loops
in L which do not intersect γk are distributed like L(D\γk), i.e. a Brownian loop soup
in D\γk. Moreover, L(D\γk) consists of a countable collection of disjoint loop soups,
one for each connected component of D \ γk. By conformal invariance, each of these
loop soups is distributed like a conformal image of a copy of L. Hence, by Lemma 9.4
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of [48], almost surely, each cluster of L(D \ γk) is at positive distance from γk. This
implies that the unconditional probability that there exists a subcluster C such that
dE(γk, C) = 0 and γk does not intersect C is zero. Since k was arbitrary and there
are countably many loops in L, the claim of the lemma follows.

Lemma 5.4.4. Almost surely, for all x with rational coordinates and all rational
δ > 0, no two clusters of the loop soup obtained by restricting L to B(x; δ) are at
Euclidean distance zero from each other.

Proof. This follows from Lemma 9.4 of [48], the restriction property of the Brownian
loop soup, conformal invariance and the fact that we consider a countable number of
balls.

Lemma 5.4.5. Almost surely, for every δ > 0 there exists t0 > 0 such that every
subcluster of L with diameter larger than δ contains a loop of time length larger than
t0.

Proof. Let δ > 0 and suppose that for all t0 > 0 there exists a subcluster of diameter
larger than δ containing only loops of time length less than t0.

Let t1 = 1 and let C1 be a subcluster of diameter larger than δ containing only
loops of time length less than t1. By the definition of a subcluster there exists a finite
chain of loops C ′1 which is a subcluster of C1 and has diameter larger than δ. Let
t2 = min{tγ : γ ∈ C ′1}, where tγ is the time length of γ. Let C2 be a subcluster
of diameter larger than δ containing only loops of time length less than t2. By the
definition of a subcluster there exists a finite chain of loops C ′2 which is a subcluster
of C2 and has diameter larger than δ. Note that by the construction γ1 6= γ2 for all
γ1 ∈ C ′1, γ2 ∈ C ′2, i.e. the chains of loops C ′1 and C ′2 are disjoint as collections of loops,
i.e. γ1 6= γ2 for all γ1 ∈ C ′1, γ2 ∈ C ′2. Iterating the construction gives infinitely many
chains of loops C ′i which are disjoint as collections of loops and which have diameter
larger than δ.

For each chain of loops C ′i take a point zi ∈ C ′i, where C ′i is viewed as a subset of
the complex plane. Since the domain is bounded, the sequence zi has an accumulation
point, say z. Let z′ have rational coordinates and δ′ be a rational number such that
|z − z′| < δ/8 and |δ − δ′| < δ/8. The annulus centered at z′ with inner radius δ′/4
and outer radius δ′/2 is crossed by infinitely many chains of loops which are disjoint
as collections of loops. However, the latter event has probability 0 by Lemma 9.6
of [48] and its consequence, leading to a contradiction.

Proof of Theorem 5.4.1. We restrict our attention to the event of probability 1 such
that the claims of Lemmas 5.4.2, 5.4.3, 5.4.4 and 5.4.5 hold true, and such that
there are only finitely many loops of diameter or time length larger than any positive
threshold. Fix a realization of L and a cluster C of L. Take CN , `N and ` defined
for C as in Lemma 5.4.2. By Proposition 5.3.6 and Lemma 5.3.13, it is enough to
prove that the sequence `N satisfies the condition that for all δ > 0 and s, t ∈ [0, 1]
which are δ-connected in `, there exists N0 such that s, t are 4δ-connected in `N for
all N > N0.

To this end, take δ > 0 and s, t such that `(s) is connected to `(t) in `∩B(x, δ/2)
for some x. Take x′ with rational coordinates and δ′ rational such that B(x; δ/2) ⊂
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B(x′; δ′/2) and B(x′; δ′) ⊂ B(x; 2δ). If C ⊂ B(x′; δ′), then `N (s) is connected to
`N (t) in `N ∩B(x; 2δ) for all N and we are done. Hence, we can assume that

C ∩ ∂B(x′; δ′) 6= ∅. (5.4.1)

When intersected with B(x′; δ′), each loop γ ∈ C may split into multiple connected
components. We call each such component of γ ∩B(x′; δ′) a piece of γ. In particular
if γ ⊂ B(x′; δ′), then the only piece of γ is the full loop γ. The collection of all pieces
we consider is given by {℘ : ℘ is a piece of γ for some γ ∈ C}. A chain of pieces is
a sequence of pieces such that each piece intersects the next piece in the sequence.
Two pieces are in the same cluster of pieces if they are connected via a finite chain of
pieces. We identify a collection of pieces with the set in the plane given by the union
of the pieces. Note that there are only finitely many pieces of diameter larger than
any positive threshold, since the number of loops of diameter larger than any positive
threshold is finite and each loop is uniformly continuous.

Let C∗1 , C
∗
2 , . . . be the clusters of pieces such that

C∗i ∩B(x′; δ′/2) 6= ∅ and C∗i ∩ ∂B(x′; δ′) 6= ∅. (5.4.2)

We will see later in the proof that the number of such clusters of pieces is finite, but
we do not need this fact yet. We now prove that

C∗i ∩ C∗j ∩B(x′; δ′/2) = ∅ for all i 6= j. (5.4.3)

To this end, suppose that (5.4.3) is false and let z ∈ C∗i ∩ C∗j ∩ B(x′; δ′/2) for some
i 6= j.

First assume that z ∈ C∗i . Then, by the definition of clusters of pieces, z /∈ C∗j . It
follows that C∗j contains a chain of infinitely many different pieces which has z as an
accumulation point. Since there are only finitely many pieces of diameter larger than
any positive threshold, the diameters of the pieces in this chain approach 0. Since
dE(z, ∂B(x′; δ′)) > δ′/2, the pieces become full loops at some point in the chain. Let
γ ∈ C be such that z ∈ γ. It follows that there exists a subcluster of loops of C,
which does not contain γ and has z as an accumulation point. This contradicts the
claim of Lemma 5.4.3 and therefore it cannot be the case that z ∈ C∗i .

Second assume that z /∈ C∗i and z /∈ C∗j . By the same argument as in the previ-
ous paragraph, there exist two chains of loops of C which are disjoint, contained in
B(x′; δ′) and both of which have z as an accumulation point. These two chains belong
to two different clusters of L restricted to B(x′; δ′). Since x′ and δ′ are rational, this
contradicts the claim of Lemma 5.4.4, and hence it cannot be the case that z /∈ C∗i
and z /∈ C∗j . This completes the proof of (5.4.3).

We now define a particular collection of pieces P . By Lemma 5.4.5, let t0 > 0
be such that every subcluster of L of diameter larger than δ′/4 contains a loop of
time length larger than t0. Let P be the collection of pieces which have diameter
larger than δ′/4 or are full loops of time length larger than t0. Note that P is finite.
Each chain of pieces which intersects both B(x′; δ′/2) and ∂B(x′; δ′), contains a piece
of diameter larger than δ′/4 intersecting ∂B(x′; δ′) or contains a chain of full loops
which intersects both B(x′; δ′/2) and ∂B(x′; 3δ′/4). In the latter case it contains a
subcluster of L of diameter larger than δ′/4 and therefore a full loop of time length
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Figure 5.4: Illustration of the last part of the proof of Theorem 5.4.1 with C∗i = C∗1 .
The pieces drawn with solid lines form the set C∗i ∩ `N . The shaded pieces represent
the set C∗i ∩ P .

larger than t0. Hence, each chain of pieces which intersects both B(x′; δ′/2) and
∂B(x′; δ′) contains an element of P . Since P is finite, it follows that the number of
clusters of pieces C∗i satisfying (5.4.2) is finite.

Since the range of ` is C and the number of clusters of pieces C∗i is finite,

` ∩B(x′; δ′/2) = C ∩B(x′; δ′/2)

=
⋃
i C
∗
i ∩B(x′; δ′/2) =

⋃
i C
∗
i ∩B(x′; δ′/2). (5.4.4)

By (5.4.3), (5.4.4) and the fact that `(s) is connected to `(t) in ` ∩B(x′; δ′/2),

`(s), `(t) ∈ C∗i ∩B(x′; δ′/2), (5.4.5)

for some i. From now on see also Figure 5.4.
Let ε be the Euclidean distance between {`(s), `(t)} and ∂B(x′; δ′/2)∪⋃j 6=i C∗j . By

(5.4.3) and (5.4.5), ε > 0. Let M be such that d∞(`N , `) < ε and `N ∩ ∂B(x′; δ′) 6= ∅
for N > M . The latter can be achieved by (5.4.1). Let N > M . By the definitions of
ε and M , we have that `N (s), `N (t) ∈ B(x′; δ′/2) and `N (s), `N (t) /∈ C∗j for j 6= i. It
follows that

`N (s), `N (t) ∈ C∗i ∩B(x′; δ′/2).

Since `N is a finite subcluster of C, it also follows that there are finite chains of
pieces G∗N (s), G∗N (t) ⊂ C∗i ∩ `N (not necessarily distinct) which connect `N (s), `N (t),
respectively, to ∂B(x′; δ′).

Since G∗N (s), G∗N (t) intersect both B(x′; δ′/2) and ∂B(x′; δ′), we have that G∗N (s),
G∗N (t) both contain an element of P . Moreover, P is finite, any two elements of C∗i are
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connected via a finite chain of pieces and `N (= CN ) increases to the full cluster C.
Hence, all elements of C∗i ∩P are connected to each other in C∗i ∩`N for N sufficiently
large. It follows that G∗N (s) is connected to G∗N (t) in C∗i ∩ `N for N sufficiently large.

Hence, `N (s) is connected to `N (t) in `N ∩ B(x′; δ′) for N sufficiently large. This
implies that s, t are 4δ-connected in `N for N sufficiently large.

5.5 No touchings

Recall the definitions of touching, Definitions 5.3.1, 5.3.3 and 5.3.4. In this section
we prove the following:

Theorem 5.5.1. Let Bt be a planar Brownian motion. Almost surely, Bt, 0 ≤ t ≤ 1,
has no touchings.

Corollary 5.5.2.

(i) Let Bloop
t be a planar Brownian loop with time length 1. Almost surely, Bloop

t ,
0 ≤ t ≤ 1, has no touchings.

(ii) Let L be a Brownian loop soup with intensity λ ∈ (0,∞) in a bounded, simply
connected domain D. Almost surely, L has no touchings.

We start by giving a sketch of the proof of Theorem 5.5.1. Note that ruling out
isolated touchings can be done using the fact that the intersection exponent ζ(2, 2) is
larger than 2 (see [30]). However, also more complicated situations like accumulations
of touchings can occur. Therefore, we proceed as follows. We define excursions of the
planar Brownian motion B from the boundary of a disk which stay in the disk. Each of
these excursions has, up to a rescaling in space and time, the same law as a process W
which we define below. We show that the process W possesses a particular property,
see Lemma 5.5.6 below. If B had a touching, it would follow that the excursions of
B would have a behavior that is incompatible with this particular property of the
process W .

As a corollary to Theorem 5.5.1, Corollary 5.5.2 and Theorem 5.3.2, we obtain the
following result. It is a natural result, but we could not find a version of this result
in the literature and therefore we include it here.

Corollary 5.5.3. Let St, t ∈ {0, 1, 2, . . .}, be a simple random walk on the square
lattice Z2, with S0 = 0, and define St for non-integer times t by linear interpolation.

(i) Let Bt be a planar Brownian motion started at 0. As N →∞, the outer bound-
ary of (N−1S2N2t, 0 ≤ t ≤ 1) converges in distribution to the outer boundary of
(Bt, 0 ≤ t ≤ 1), with respect to dH .

(ii) Let Bloop
t be a planar Brownian loop of time length 1 started at 0. As N →∞,

the outer boundary of (N−1S2N2t, 0 ≤ t ≤ 1), conditional on {S2N2 = 0},
converges in distribution to the outer boundary of (Bloop

t , 0 ≤ t ≤ 1), with
respect to dH .
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To define the process W mentioned above, we recall some facts about the three-
dimensional Bessel process and its relation with Brownian motion, see e.g. Lemma
1 of [11] and the references therein. The three-dimensional Bessel process can be
defined as the modulus of a three-dimensional Brownian motion.

Lemma 5.5.4. Let Xt be a one-dimensional Brownian motion starting at 0 and Yt
a three-dimensional Bessel process starting at 0. Let 0 < a < a′ and define τ =
Ta(X) = inf{t ≥ 0 : |Xt| = a}, τ ′ = Ta′(X), σ = sup{t < τ : Xt = 0}, ρ = Ta(Y ) and
ρ′ = Ta′(Y ). Then,

(i) the two processes (Xσ+u, 0 ≤ u ≤ τ −σ) and (Yu, 0 ≤ u ≤ ρ) have the same law,

(ii) the process (Yρ+u, 0 ≤ u ≤ ρ′ − ρ) has the same law as the process (Xτ+u, 0 ≤
u ≤ τ ′ − τ) conditional on {∀u ∈ [0, τ ′ − τ ], Xτ+u 6= 0}.

Next we recall the skew-product representation of planar Brownian motion, see
e.g. Theorem 7.26 of [41]: For a planar Brownian motion Bt starting at 1, there exist
two independent one-dimensional Brownian motions X1

t and X2
t starting at 0 such

that

Bt = exp(X1
H(t) + iX2

H(t)),

where

H(t) = inf

{
h ≥ 0 :

∫ h

0

exp(2X1
u)du > t

}
=

∫ t

0

1

|Bu|2
du.

We define the processWt as follows. LetXt be a one-dimensional Brownian motion
starting according to some distribution on [0, 2π). Let Yt be a three-dimensional Bessel
process starting at 0, independent of Xt. Define

Vt = exp(−YH(t) + iXH(t)),

where

H(t) = inf

{
h ≥ 0 :

∫ h

0

exp(−2Yu)du > t

}
.

Let Bt be a planar Brownian motion starting at 0, independent of Xt and Yt, and
define

Wt =

{
Vt, 0 ≤ t ≤ τ 1

2
,

Vτ 1
2

+Bt−τ 1
2

, τ 1
2
< t ≤ τ,

with

τ 1
2

= inf{t > 0 : |Vt| = 1
2},

τ = inf{t > τ 1
2

: |Vτ 1
2

+Bt−τ 1
2

| = 1}.

Note that Wt starts on the unit circle, stays in the unit disk and is stopped when it
hits the unit circle again.

Next we derive the property of W which we will use in the proof of Theorem 5.5.1.
For this, we need the following property of planar Brownian motion:
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Figure 5.5: The event Eε.

Lemma 5.5.5. Let B be a planar Brownian motion started at 0 and stopped when it
hits the unit circle. Almost surely, there exists ε > 0 such that for all curves γ with
d∞(γ,B) < ε we have that γ disconnects ∂B(0; ε) from ∂B(0; 1).

Proof. We construct the event Eε, for 0 < ε ≤ 1/7, illustrated in Figure 5.5. Loosely
speaking, Eε is the event that B disconnects 0 from the unit circle in a strong sense,
by crossing an annulus centered at 0 and winding around twice in this annulus. Let

τ1 = inf{t ≥ 0 : |Bt| = 2ε}, τ2 = inf{t ≥ 0 : |Bt| = 6ε},
τ3 = inf{t > τ2 : |Bt| = 4ε}, τ4 = inf{t > τ3 : |arg(Bt/Bτ3)| = 4π},

where arg is the continuous determination of the angle. Let

A1 = {z ∈ C : ε < |z| < 7ε, |arg(z/Bτ1)| < π/4},
A2 = {z ∈ C : 3ε < |z| < 5ε}.

Define the event Eε by

Eε = {τ4 <∞, B[τ1, τ3] ⊂ A1, B[τ3, τ4] ⊂ A2}.

By construction, if Eε occurs then for all curves γ with d∞(γ,B) < ε we have that
γ disconnects ∂B(0; 2ε) from ∂B(0; 6ε). It remains to prove that almost surely Eε
occurs for some ε. By scale invariance of Brownian motion, P(Eε) does not depend
on ε, and it is obvious that P(Eε) > 0. Furthermore, the events E1/7n , n ∈ N, are
independent. Hence almost surely Eε occurs for some ε.

Lemma 5.5.6. Let γ : [0, 1] → C be a curve with |γ(0)| = |γ(1)| = 1 and |γ(t)| < 1
for all t ∈ (0, 1). Let W denote the process defined above Lemma 5.5.5 and assume
that W0 6∈ {γ(0), γ(1)} a.s. Then the intersection of the following two events has
probability 0:
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(i) γ ∩W 6= ∅,

(ii) for all ε > 0 there exist curves γ′, γ′′ such that d∞(γ, γ′) < ε, d∞(W,γ′′) < ε
and γ′ ∩ γ′′ = ∅.

Proof. The idea of the proof is as follows. We run the process Wt till it hits ∂B(0; a),
where a < 1 is close to 1. From that point the process is distributed as a conditional
Brownian motion. We run the Brownian motion till it hits the trace of the curve γ.
From that point the Brownian motion winds around such that the event (ii) cannot
occur, by Lemma 5.5.5.

Let Ta(W ) = inf{t ≥ 0 : |Wt| = a} and let P be the law of WTa(W ). Let Bt be a
planar Brownian motion with starting point distributed according to the law P and
stopped when it hits the unit circle. Let τ = inf{t > 0 : |Wt| = 1}. By Lemma 5.5.4
and the skew-product representation, if a ∈ ( 1

2 , 1), the process

(Wt, Ta(W ) ≤ t ≤ τ)

has the same law as

(Bt, 0 ≤ t ≤ T1(B)) conditional on {T1/2(B) < T1(B)},

where T1(B) = inf{t ≥ 0 : |Bt| = 1}. Let E1, E2 be similar to the events (i) and (ii),
respectively, from the statement of the lemma, but with B instead of W , i.e.

E1 = {γ ∩B 6= ∅},
E2 = {for all ε > 0 there exist curves γ′, γ′′ such that d∞(γ, γ′) < ε,

d∞(B, γ′′) < ε, γ′ ∩ γ′′ = ∅}.

Let Tγ(W ) = inf{t ≥ 0 : Wt ∈ γ} be the first time Wt hits the trace of the curve γ.
The probability of the intersection of the events (i) and (ii) from the statement of

the lemma is bounded above by

P(E1 ∩ E2 | T1/2(B) < T1(B)) + P(Tγ(W ) ≤ Ta(W ))

≤ P(E2 | E1)P(E1)

P(T1/2(B) < T1(B))
+ P(Tγ(W ) ≤ Ta(W )). (5.5.1)

The second term in (5.5.1) converges to 0 as a → 1, by the assumption that W0 6∈
{γ(0), γ(1)} a.s. The first term in (5.5.1) is equal to 0. This follows from the fact
that

P(E2 | E1) = 0, (5.5.2)

which we prove below, using Lemma 5.5.5.
To prove (5.5.2) note that E1 = {Tγ(B) ≤ T1(B)}, where Tγ(B) = inf{t ≥

0 : Bt ∈ γ}. Define δ = 1 − |BTγ(B)| and note that δ > 0 a.s. The time Tγ(B) is a
stopping time and hence, by the strong Markov property, Bt, t ≥ Tγ(B), is a Brownian
motion. Therefore, by translation and scale invariance, we can apply Lemma 5.5.5 to
Bt started at time Tγ(B) and stopped when it hits the boundary of the ball centered
at BTγ(B) with radius δ. It follows that (5.5.2) holds.
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Proof of Theorem 5.5.1. For δ0 > 0 we say that a curve γ : [0, 1] → C has a δ0-
touching (s, t) if (s, t) is a touching and we can take δ = δ0 in Definition 5.3.1, and
moreover A ∩ ∂B(γ(s); δ0) 6= ∅ for all A ∈ {γ[0, s), γ(s, t), γ(t, 1]}. The last condition
ensures that if (s, t) is a δ0-touching then γ makes excursions from ∂B(γ(s); δ0) which
visit γ(s).

Since Bt 6= B0 for all t ∈ (0, 1] a.s., we have that (0, t) is not a touching for all
t ∈ (0, 1] a.s. By time inversion, B1 −B1−u, 0 ≤ u ≤ 1, is a planar Brownian motion
and hence (s, 1) is not a touching for all s ∈ [0, 1) a.s. For every touching (s, t) with
0 < s < t < 1 there exists δ′ > 0 such that for all δ ≤ δ′ we have that (s, t) is a
δ-touching a.s. (A touching (s, t) that is not a δ-touching for any δ > 0 could only
exist if Bu = B0 for all u ∈ [0, s] or Bu = B1 for all u ∈ [t, 1].) We prove that for
every δ > 0 we have almost surely,

B has no δ-touchings (s, t) with 0 < s < t < 1. (5.5.3)

By letting δ → 0 it follows that B has no touchings a.s.
To prove (5.5.3), fix δ > 0 and let z ∈ C. We define excursions Wn, for n ∈ N, of

the Brownian motion B as follows. Let

τ0 = inf{u ≥ 0 : |Bu − z| = 2δ/3},

and define for n ≥ 1,

σn = inf{u > τn−1 : |Bu − z| = δ/3},
ρn = sup{u < σn : |Bu − z| = 2δ/3},
τn = inf{u > σn : |Bu − z| = 2δ/3}.

Note that ρn < σn < τn < ρn+1 and that ρn, σn, τn may be infinite. The reason
that we take 2δ/3 instead of δ is that we will consider δ-touchings (s, t) not only with
Bs = z but also with |Bs − z| < δ/3. We define the excursion Wn by

Wn
u = Bu, ρn ≤ u ≤ τn.

Observe that Wn has, up to a rescaling in space and time and a translation, the same
law as the process W defined above Lemma 5.5.5. This follows from Lemma 5.5.4,
the skew-product representation and Brownian scaling.

If B has a δ-touching (s, t) with |Bs − z| < δ/3, then there exist m 6= n such that

(i) Wm ∩Wn 6= ∅,

(ii) for all ε > 0 there exist curves γm, γn such that d∞(γm,Wm) < ε, d∞(γn,Wn) <
ε and γm ∩ γn = ∅.

By Lemma 5.5.6, with Wm playing the role of W and Wn of γ, for each m,n such
that m 6= n the intersection of the events (i) and (ii) has probability 0. Here we
use the fact that Wm

ρm 6∈ {Wn
ρn ,W

n
τn} a.s. Hence B has no δ-touchings (s, t) with

|Bs− z| < δ/3 a.s. We can cover the plane with a countable number of balls of radius
δ/3 and hence B has no δ-touchings a.s.
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Proof of Corollary 5.5.2. First we prove part (i). For any u0 ∈ (0, 1), the laws of the
processes Bloop

u , 0 ≤ u ≤ u0, and Bu, 0 ≤ u ≤ u0, are mutually absolutely continuous,
see e.g. Exercise 1.5(b) of [41]. Hence by Theorem 5.5.1 the process Bloop

u , 0 ≤ u ≤ 1,
has no touchings (s, t) with 0 ≤ s < t ≤ u0 a.s., for any u0 ∈ (0, 1). Taking a sequence
of u0 converging to 1, we have that Bloop

u , 0 ≤ u ≤ 1, has no touchings (s, t) with

0 ≤ s < t < 1 a.s. By time reversal, Bloop
1 − Bloop

1−u , 0 ≤ u ≤ 1, is a planar Brownian
loop. It follows that Bloop

u , 0 ≤ u ≤ 1, has no touchings (s, 1) with s ∈ (0, 1) a.s. By
Lemma 5.5.5, the time pair (0, 1) is not a touching a.s.

Second we prove part (ii). By Corollary 5.5.2 and the fact that there are countably
many loops in L, we have that every loop in L has no touchings a.s. We prove that
each pair of loops in L has no mutual touchings a.s. To this end, we discover the loops
in L one by one in decreasing order of their diameter, similarly to the construction
in Section 4.3 of [42]. Given a set of discovered loops γ1, . . . , γk−1, we prove that the
next loop γk and the already discovered loop γi have no mutual touchings a.s., for
each i ∈ {1, . . . , k−1} separately. Note that, conditional on γ1, . . . , γk−1, we can treat
γi as a deterministic loop, while γk is a (random) planar Brownian loop. Therefore,
to prove that γk and γi have no mutual touchings a.s., we can define excursions of γi
and γk and apply Lemma 5.5.6 in a similar way as in the proof of Theorem 5.5.1. We
omit the details.

5.6 Distance between Brownian loops

In this section we give two estimates, on the Euclidean distance between non-intersect-
ing loops in the Brownian loop soup and on the overlap between intersecting loops in
the Brownian loop soup. We will only use the first estimate in the proof of Theorem
5.2.1. As a corollary to the two estimates, we obtain a one-to-one correspondence
between clusters composed of “large” loops from the random walk loop soup and
clusters composed of “large” loops from the Brownian loop soup. This is an extension
of Corollary 5.4 of [31]. For intersecting loops γ1, γ2 we define their overlap by

overlap(γ1, γ2) = 2 sup{ε ≥ 0 : for all loops γ′1, γ
′
2 such that d∞(γ1, γ

′
1) ≤ ε,

d∞(γ2, γ
′
2) ≤ ε, we have that γ′1 ∩ γ′2 6= ∅}.

Proposition 5.6.1. Let L be a Brownian loop soup with intensity λ ∈ (0,∞) in a
bounded, simply connected domain D. Let c > 0 and 16/9 < θ < 2. For all non-
intersecting loops γ, γ′ ∈ L of time length at least Nθ−2 we have that dE(γ, γ′) ≥
cN−1 logN , with probability tending to 1 as N →∞.

Proposition 5.6.2. Let L be a Brownian loop soup with intensity λ ∈ (0,∞) in
a bounded, simply connected domain D. Let c > 0 and θ < 2 sufficiently close to
2. For all intersecting loops γ, γ′ ∈ L of time length at least Nθ−2 we have that
overlap(γ, γ′) ≥ cN−1 logN , with probability tending to 1 as N →∞.

Corollary 5.6.3. Let D be a bounded, simply connected domain, take λ ∈ (0,∞)

and θ < 2 sufficiently close to 2. Let L,LNθ−2

, L̃N , L̃N
θ−2

N be defined as in Section
5.2. For every N we can define L̃N and L on the same probability space in such a
way that the following holds with probability tending to 1 as N →∞. There is a one-

to-one correspondence between the clusters of L̃Nθ−2

N and the clusters of LNθ−2

such
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that for corresponding clusters, C̃ ⊂ L̃Nθ−2

N and C ⊂ LNθ−2

, there is a one-to-one
correspondence between the loops in C̃ and the loops in C such that for corresponding
loops, γ̃ ∈ C̃ and γ ∈ C, we have that d∞(γ, γ̃) ≤ cN−1 logN , for some constant c
which does not depend on N .

Proof. Let c be two times the constant in Corollary 5.4 of [31]. Combine this corollary
and Propositions 5.6.1 and 5.6.2 with the c in Propositions 5.6.1 and 5.6.2 equal to
six times the constant in Corollary 5.4 of [31].

In Propositions 5.6.1 and 5.6.2 and Corollary 5.6.3, the probability tends to 1 as
a power of N . This can be seen from the proofs. We will use Proposition 5.6.1, but
we will not use Proposition 5.6.2 in the proof of Theorem 5.2.1. Because of this, and
because the proofs of Propositions 5.6.1 and 5.6.2 are based on similar techniques, we
omit the proof of Proposition 5.6.2. To prove Proposition 5.6.1, we first prove two
lemmas.

Lemma 5.6.4. Let B be a planar Brownian motion and let Bloop,t0 be a planar
Brownian loop with time length t0. There exist c1, c2 > 0 such that, for all 0 < δ < δ′

and all N ≥ 1,

P(diamB[0, N−δ] ≤ N−δ′/2) ≤ c1 exp(−c2Nδ′−δ), (5.6.1)

P(diamBloop,N−δ ≤ N−δ′/2) ≤ c1 exp(−c2Nδ′−δ). (5.6.2)

Proof. First we prove (5.6.2). By Brownian scaling,

P(diamBloop,N−δ ≤ N−δ′/2)

= P(diamBloop,1 ≤ N−(δ′−δ)/2)

≤ P(supt∈[0,1] |X loop
t | ≤ N−(δ′−δ)/2)2,

where X loop
t is a one-dimensional Brownian bridge starting at 0 with time length

1. The distribution of supt∈[0,1] |X loop
t | is the asymptotic distribution of the (scaled)

Kolmogorov-Smirnov statistic, and we can write, see e.g. Theorem 1 of [25],

P(supt∈[0,1] |X loop
t | ≤ N−(δ′−δ)/2)

=
√

2πN (δ′−δ)/2∑∞
k=1 e

−(2k−1)2π28−1Nδ
′−δ

≤
√

2πN (δ′−δ)/2∑∞
k=1 e

−(2k−1)π28−1Nδ
′−δ

=
√

2πN (δ′−δ)/2eπ
28−1Nδ

′−δ∑∞
k=1(e−2π28−1Nδ

′−δ
)k

=
√

2πN (δ′−δ)/2e−π
28−1Nδ

′−δ
(1− e−2π28−1Nδ

′−δ
)−1

≤ ce−Nδ
′−δ
, (5.6.3)

for some constant c and all 0 < δ < δ′ and all N ≥ 1. This proves (5.6.2).

Next we prove (5.6.1). We can write X loop
t = Xt − tX1, where Xt is a one-

dimensional Brownian motion starting at 0. Hence

sup
t∈[0,1]

|X loop
t | ≤ sup

t∈[0,1]

|Xt|+ |X1| ≤ 2 sup
t∈[0,1]

|Xt|. (5.6.4)
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By Brownian scaling, (5.6.4) and (5.6.3),

P(diamB[0, N−δ] ≤ N−δ′/2)

= P(diamB[0, 1] ≤ N−(δ′−δ)/2)

≤ P(supt∈[0,1] |Xt| ≤ N−(δ′−δ)/2)2

≤ P(supt∈[0,1] |X loop
t | ≤ 2N−(δ′−δ)/2)2

≤ c2e− 1
2N

δ′−δ
.

This proves (5.6.1).

Lemma 5.6.5. There exist c1, c2 > 0 such that the following holds. Let c > 0 and
0 < δ < δ′ < 2. Let γ be a (deterministic) loop with diamγ ≥ N−δ′/2. Let Bloop,t0 be
a planar Brownian loop starting at 0 of time length t0 ≥ N−δ. Then for all N > 1,

P(0 < dE(B
loop,t0 , γ) ≤ cN−1 logN)

≤ c1N−1/2+δ′/4(c logN)1/2 + c1 exp(−c2Nδ′−δ)

Proof. We use some ideas from the proof of Proposition 5.1 of [31]. By time reversal,
we have

P(0 < dE(B
loop,t0 , γ) ≤ cN−1 logN)

≤ 2P(0 < dE(Bloop,t0 [0, 1
2 t0], γ) ≤ cN−1 logN,Bloop,t0 [0, 3

4 t0] ∩ γ = ∅)
= 4t0 lim

ε↓0
ε−2P(0 < dE(B[0, 1

2 t0], γ) ≤ cN−1 logN,B[0, 3
4 t0] ∩ γ = ∅, (5.6.5)

|Bt0 | ≤ ε),

where B is a planar Brownian motion starting at 0. The equality (5.6.5) follows from

the following relation between the law µ]0,t0 of (Bloop,t0
t , 0 ≤ t ≤ t0) and the law µ0,t0

of (Bt, 0 ≤ t ≤ t0):

µ]0,t0 = 2t0 lim
ε↓0

ε−2µ0,t0 1{|γ(t0)|≤ε},

see Section 5.2 of [29] and Section 3.1.1 of [32].
Next we bound the probability

P(0 < dE(B[0, 1
2 t0], γ) ≤ cN−1 logN,B[0, 3

4 t0] ∩ γ = ∅). (5.6.6)

If the event in (5.6.6) occurs, then Bt hits the cN−1 logN neighborhood of γ before
time 1

2 t0, say at the point x. From that moment, in the next 1
4 t0 time span, Bt

either stays within a ball containing x (to be defined below) or exits this ball without
touching γ. Hence, using the strong Markov property, (5.6.6) is bounded above by

sup
x∈C,y∈γ

|x−y|≤cN−1 logN

P(τxy >
1
4 t0) + P(Bx[0, τxy ] ∩ γ = ∅), (5.6.7)

where Bx is a planar Brownian motion starting at x and τxy is the exit time of Bx

from the ball B(y; 1
4N
−δ′/2).
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To bound the second term in (5.6.7), recall that diamγ ≥ N−δ
′/2, so γ intersects

both the center and the boundary of the ball B(y; 1
4N
−δ′/2). Hence we can apply the

Beurling estimate (see e.g. Theorem 3.76 of [29]) to obtain the following upper bound
for the second term in (5.6.7),

c1(4cNδ′/2N−1 logN)1/2, (5.6.8)

for some constant c1 > 1 which in particular does not depend on the curve γ. The
above reasoning to obtain the bound (5.6.8) holds if cN−1 logN < 1

4N
−δ′/2 and hence

for large enough N . If N is small then the bound (5.6.8) is larger than 1 and holds
trivially. To bound the first term in (5.6.7) we use Lemma 5.6.4,

P(τxy >
1
4 t0) ≤ P(τxy >

1
4N
−δ) ≤ P(diamB[0, 1

4N
−δ] ≤ 1

2N
−δ′/2)

≤ c2 exp(−c3Nδ′−δ),

for some constants c2, c3 > 0.
We have that

P(|Bt0 | ≤ ε | 0 < dE(B[0, 1
2 t0], γ) ≤ cN−1 logN,B[0, 3

4 t0] ∩ γ = ∅)

≤ sup
x∈C

P(|Bx1
4 t0
| ≤ ε) = P(|B 1

4 t0
| ≤ ε) ≤ 8

π
ε2t−1

0 . (5.6.9)

The first inequality in (5.6.9) follows from the Markov property of Brownian motion.
The equality in (5.6.9) follows from the fact that Bx1

4 t0
is a two-dimensional Gaussian

random vector centered at x. By combining (5.6.5), the bound on (5.6.6), and (5.6.9),
we conclude that

P(0 < dE(B
loop,t0 , γ) ≤ cN−1 logN)

≤ 32

π
[c1(4cNδ′/2N−1 logN)1/2 + c2 exp(−c3Nδ′−δ)].

Proof of Proposition 5.6.1. Let 2 − θ =: δ < δ′ < 2 and let XN be the number of
loops in L of time length at least N−δ. First, we give an upper bound on XN . Note
that XN is stochastically less than the number of loops γ in a Brownian loop soup in
the full plane C with tγ ≥ N−δ and γ(0) ∈ D. The latter random variable has the
Poisson distribution with mean

λ

∫
D

∫ ∞
N−δ

1

2πt20
dt0dA(z) = λA(D)

1

2π
Nδ,

where A denotes two-dimensional Lebesgue measure. By Chebyshev’s inequality,
XN ≤ Nδ logN with probability tending to 1 as N →∞.

Second, we bound the probability that L contains loops of large time length with
small diameter. By Lemma 5.6.4,

P(∃γ ∈ L, tγ ≥ N−δ,diamγ < N−δ
′/2)

≤ Nδ logN c1 exp(−c2Nδ′−δ) + P(XN > Nδ logN), (5.6.10)

for some constants c1, c2 > 0. The expression (5.6.10) converges to 0 as N →∞.
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Third, we prove the proposition. To this end, we discover the loops in L one by
one in decreasing order of their time length, similarly to the construction in Section
4.3 of [42]. This exploration can be done in the following way. Let L1,L2, . . . be a
sequence of independent Brownian loop soups with intensity λ in D. From L1 take
the loop γ1 with the largest time length. From L2 take the loop γ2 with the largest
time length smaller than tγ1

. Iterating this procedure yields a random collection of
loops {γ1, γ2, . . .}, which is such that tγ1 > tγ2 > · · · a.s. By properties of Poisson
point processes, {γ1, γ2, . . .} is a Brownian loop soup with intensity λ in D.

Given a set of discovered loops γ1, . . . , γk−1, we bound the probability that the
next loop γk comes close to γi but does not intersect γi, for each i ∈ {1, . . . , k − 1}
separately. Note that, because of the conditioning, we can treat γi as a deterministic
loop, while γk is random. Therefore, to obtain such a bound, we can use Lemma 5.6.5
on the event that tγk ≥ N−δ and diamγi ≥ N−δ

′/2. We use the first and second steps
of this proof to bound the probability that L contains more than Nδ logN loops of
large time length, or loops of large time length with small diameter. Thus,

P(∃γ, γ′ ∈ L, tγ , tγ′ ≥ N−δ, 0 < dE(γ, γ
′) ≤ cN−1 logN)

≤ (Nδ logN)2[c3N
−1/2+δ′/4(c logN)1/2 + c3 exp(−c4Nδ′−δ)]+

P({XN > Nδ logN} ∪ {∃γ ∈ L, tγ ≥ N−δ,diamγ < N−δ
′/2}), (5.6.11)

for some constants c3, c4 > 0. If δ′ < 2/9, then (5.6.11) converges to 0 as N →∞.

5.7 Proof of main result

Proof of Theorem 5.2.1. By Corollary 5.4 of [31], for every N we can define on the
same probability space L̃N and L such that the following holds with probability
tending to 1 as N → ∞: There is a one-to-one correspondence between the loops in

L̃Nθ−2

N and the loops in LNθ−2

such that, if γ̃ ∈ L̃Nθ−2

N and γ ∈ LNθ−2

are paired in
this correspondence, then d∞(γ̃, γ) < cN−1 logN , where c is a constant which does
not depend on N .

We prove that in the above coupling, for all δ, α > 0 there exists N0 such that for
all N ≥ N0 the following holds with probability at least 1 − α: For every outermost

cluster C of L there exists an outermost cluster C̃N of L̃Nθ−2

N such that

dH(C, C̃N ) < δ, dH(ExtC,ExtC̃N ) < δ, (5.7.1)

and for every outermost cluster C̃N of L̃Nθ−2

N there exists an outermost cluster C of L
such that (5.7.1) holds. By Lemma 5.3.8, (5.7.1) implies that dH(∂oC, ∂oC̃N ) < 2δ and
dH(HullC,HullC̃N ) < 2δ. Also, (5.7.1) implies that the Hausdorff distance between

the carpet of L and the carpet of L̃Nθ−2

N is less than or equal to δ. Hence this proves
the theorem.

Fix δ, α > 0. To simplify the presentation of the proof of (5.7.1), we will often use
the phrase “with high probability”, by which we mean with probability larger than
a certain lower bound which is uniform in N . It is not difficult to check that we can
choose these lower bounds in such a way that (5.7.1) holds with probability at least
1− α.
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First we define some constants. By Lemma 9.7 of [48], a.s. there are only finitely
many clusters of L with diameter larger than any positive threshold; moreover they
are all at positive distance from each other. Let ρ ∈ (0, δ/2) be such that, with high
probability, for every z ∈ D we have that z ∈ HullC for some outermost cluster C
of L with diamC ≥ δ/2, or dE(z, C) < δ/4 for some outermost cluster C of L with
ρ < diamC < δ/2. The existence of such a ρ follows from the fact that a.s. L is dense
in D and that there are only finitely many clusters of L with diameter at least δ/2.
We call a cluster or subcluster large (small) if its diameter is larger than (less than
or equal to) ρ.

Let ε1 > 0 be such that, with high probability,

|diamC − ρ| > ε1

for all clusters C of L. Let ε2 > 0 be such that, with high probability,

dE(C1, C2) > ε2

for all distinct large clusters C1, C2 of L. For every large cluster C1 of L, let ℘(C1) be
a path connecting HullC1 with ∞ such that, for all large clusters C2 of L such that
HullC1 6⊂ HullC2, we have that ℘(C1) ∩ HullC2 = ∅. Let ε3 > 0 be such that, with
high probability,

dE(℘(C1),HullC2) > ε3

for all large clusters C1, C2 of L such that HullC1 6⊂ HullC2. By Lemma 5.3.7 (and
Remark 5.3.9) we can choose ε4 > 0 such that, with high probability, for every large
cluster C of L,

if dH(C, C̃) < ε4, then ExtC ⊂ (ExtC̃)min{δ,ε2}/8

for any collection of loops C̃.
Let t0 > 0 be such that, with high probability, every subcluster C of L with

diamC > ρ − ε1 contains a loop of time length larger than t0. Such a t0 exists by
Lemma 5.4.5. In particular, every large subcluster of L contains a loop of time length
larger than t0. Note that the number of loops with time length larger than t0 is a.s.
finite.

From now on the proof is in six steps, and we start by giving a sketch of these
steps (see Figure 5.6). First, we treat the large clusters. For every large cluster C of
L, we choose a finite subcluster C ′ of C such that dH(C,C ′) and dH(ExtC,ExtC ′)
are small, using Theorem 5.4.1. Second, we approximate C ′ by a subcluster C̃ ′N of

L̃Nθ−2

N such that dH(ExtC ′,ExtC̃ ′N ) is small, using the one-to-one correspondence
between random walk loops and Brownian loops, Theorem 5.3.5 and Corollary 5.5.2.

Third, we let C̃N be the cluster of L̃Nθ−2

N that contains C̃ ′N . Here we make sure,
using Proposition 5.6.1, that for distinct subclusters C̃ ′1,N , C̃

′
2,N , the corresponding

clusters C̃1,N , C̃2,N are distinct. It follows that dH(C, C̃N ) and dH(ExtC,ExtC̃N ) are

small. Fourth, we show that the obtained clusters C̃N are large. We also show that

we obtain in fact all large clusters of L̃Nθ−2

N in this way. Fifth, we prove that a large

cluster C of L is outermost if and only if the corresponding large cluster C̃N of L̃Nθ−2

N

is outermost. Sixth, we deal with the small outermost clusters.
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L̃Nθ−2

N L

cluster

subcluster

Step 1

Step 2

Step 3

C̃N C

C̃ ′
N C ′

Figure 5.6: Schematic diagram of the proof of Theorem 5.2.1. We start with a cluster

C of L and, following the arrows, we construct a cluster C̃N of L̃Nθ−2

N . The dashed
arrow indicates that C and C̃N satisfy (5.7.1).

Step 1. Let C be the collection of large clusters of L. By Lemma 9.7 of [48], the
collection C is finite a.s. For every C ∈ C let C ′ be a finite subcluster of C such that
C ′ contains all loops in C which have time length larger than t0 and

dH(C,C ′) < min{δ, ε1, ε2, ε3, ε4}/16, (5.7.2)

dH(ExtC,ExtC ′) < min{δ, ε2}/16, (5.7.3)

a.s. This is possible by Theorem 5.4.1. Let C′ be the collection of these finite sub-
clusters C ′.

Step 2. For every C ′ ∈ C′ let C̃ ′N ⊂ L̃N
θ−2

N be the set of random walk loops which
correspond to the Brownian loops in C ′, in the one-to-one correspondence from the
first paragraph of this proof. This is possible for large N , with high probability, since
then ⋃ C′ ⊂ LNθ−2

,

where
⋃ C′ =

⋃
C′∈C′ C

′. Let C̃′N be the collection of these sets of random walk loops

C̃ ′N .
Now we prove some properties of the elements of C̃′N . By Corollary 5.5.2, C ′ has

no touchings a.s. Hence, by Theorem 5.3.5 (and Remark 5.3.9), for large N , with
high probability,

dH(ExtC ′,ExtC̃ ′N ) < min{δ, ε2}/16. (5.7.4)

Next note that almost surely, dE(γ, γ′) > 0 for all non-intersecting loops γ, γ′ ∈ L,
and overlap(γ, γ′) > 0 for all intersecting loops γ, γ′ ∈ L. Since the number of loops
in
⋃ C′ is finite, we can choose η > 0 such that, with high probability, dE(γ, γ′) > η

for all non-intersecting loops γ, γ′ ∈ ⋃ C′, and overlap(γ, γ′) > η for all intersecting
loops γ, γ′ ∈ ⋃ C′. For large N , cN−1 logN < η/2 and hence with high probability,

γ1 ∩ γ2 = ∅ if and only if γ̃1 ∩ γ̃2 = ∅, for all γ1, γ2 ∈
⋃ C′, (5.7.5)

where γ̃1, γ̃2 are the random walk loops which correspond to the Brownian loops
γ1, γ2, respectively. By (5.7.5), every C̃ ′N ∈ C̃′N is connected and hence a subcluster of
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L̃Nθ−2

N . Also by (5.7.5), for distinct C ′1, C
′
2 ∈ C′, the corresponding C̃ ′1,N , C̃

′
2,N ∈ C̃′N

do not intersect each other when viewed as subsets of the plane.

Step 3. For every C̃ ′N ∈ C̃′N let C̃N be the cluster of L̃Nθ−2

N which contains C̃ ′N . Let
C̃N be the collection of these clusters C̃N . We claim that for distinct C̃ ′1,N , C̃

′
2,N ∈ C̃′N ,

the corresponding C̃1,N , C̃2,N ∈ C̃N are distinct, for large N , with high probability.

This implies that there is one-to-one correspondence between elements of C̃′N and
elements of C̃N , and hence between elements of C, C′, C̃′N and C̃N .

To prove the claim, we combine Proposition 5.6.1 and the one-to-one correspon-
dence between random walk loops and Brownian loops to obtain that, for large N ,
with high probability,

if γ1 ∩ γ2 = ∅ then γ̃1 ∩ γ̃2 = ∅, for all γ1, γ2 ∈ LN
θ−2

, (5.7.6)

where γ̃1, γ̃2 are the random walk loops which correspond to the Brownian loops
γ1, γ2, respectively. Let C̃ ′1,N , C̃

′
2,N ∈ C̃′N be distinct. Let C ′1, C

′
2 ∈ C′ be the finite

subclusters of Brownian loops which correspond to C̃ ′1,N , C̃
′
2,N , respectively. By con-

struction, C ′1, C
′
2 are contained in clusters of LNθ−2

which are distinct. Hence by
(5.7.6), C̃1,N , C̃2,N are distinct.

Next we prove that, for large N , with high probability,

dH(C, C̃N ) < min{δ, ε1, ε2, ε3, ε4}/4, (5.7.7)

dH(ExtC,ExtC̃N ) < min{δ, ε2}/4, (5.7.8)

which implies that C and C̃N satisfy (5.7.1). To prove (5.7.7), let N be sufficiently
large, so that in particular cN−1 logN < min{δ, ε1, ε2, ε3, ε4}/16. By (5.7.2), with
high probability,

C ⊂ (C ′)min{δ,ε1,ε2,ε3,ε4}/16 ⊂ (C̃ ′N )min{δ,ε1,ε2,ε3,ε4}/8 ⊂ (C̃N )min{δ,ε1,ε2,ε3,ε4}/8.

By (5.7.6), C̃N ⊂ Cmin{δ,ε1,ε2,ε3,ε4}/16. This proves (5.7.7). To prove (5.7.8), note
that by (5.7.7) and the definition of ε4, ExtC ⊂ (ExtC̃N )min{δ,ε2}/8. By (5.7.3) and
(5.7.4),

ExtC̃N ⊂ ExtC̃ ′N ⊂ (ExtC)min{δ,ε2}/8.

This proves (5.7.8).
Step 4. We prove that, for large N , with high probability, all C̃N ∈ C̃N are large,

and that all large clusters of L̃Nθ−2

N are elements of C̃N . This gives that, for large N ,
with high probability, there is a one-to-one correspondence between large clusters C

of L and large clusters C̃N of L̃Nθ−2

N such that (5.7.7) and (5.7.8) hold, and hence
such that (5.7.1) holds.

First we show that, for large N , with high probability, all C̃N ∈ C̃N are large.
By (5.7.7) and the definition of ε1, for large N , with high probability, diamC̃N >
diamC − ε1 > ρ, i.e. C̃N is large.

Next we prove that, for large N , with high probability, all large clusters of L̃Nθ−2

N

are elements of C̃N . Let G̃N be a large cluster of L̃Nθ−2

N . Let GN ⊂ LN
θ−2

be the set of
Brownian loops which correspond to the random walk loops in G̃N . By (5.7.6), GN is
connected and hence a subcluster of L. If cN−1 logN < ε1/2, then diamGN > ρ−ε1.
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> ε2
> ε3

G

C

℘(C)

Figure 5.7: The case HullC ∩HullG = ∅ in Step 5.

Let G be the cluster of L which contains GN . We have that diamG > ρ − ε1 and
hence by the definition of ε1, with high probability, G is large, i.e. G ∈ C. Let G̃∗N be
the element of C̃N which corresponds to G. We claim that

G̃∗N = G̃N , (5.7.9)

which implies that G̃N ∈ C̃N .
To prove (5.7.9), let G′ be the element of C′ which corresponds to G. Since GN is

a subcluster of L with diamGN > ρ− ε1, GN contains a loop γ of time length larger
than t0. Since γ ∈ G and tγ > t0, by the construction of G′, we have that γ ∈ G′.
Hence γ̃ ∈ G̃∗N , where γ̃ is the random walk loop corresponding to the Brownian loop
γ. Since γ ∈ GN , by the definition of GN , we have that γ̃ ∈ G̃N . It follows that
γ̃ ∈ G̃N ∩ G̃∗N , which implies that (5.7.9) holds.

Step 5. Let C,G be distinct large clusters of L, and let C̃N , G̃N be the large

clusters of L̃Nθ−2

N which correspond to C,G, respectively. We prove that, for large N ,
with high probability,

HullC ⊂ HullG if and only if HullC̃N ⊂ HullG̃N . (5.7.10)

It follows from (5.7.10) that a large cluster C of L is outermost if and only if the

corresponding large cluster C̃N of L̃Nθ−2

N is outermost.
To prove (5.7.10), suppose that HullC ⊂ HullG. By the definition of ε2, (HullC)ε2/2

⊂ C \ (ExtG)ε2/2. By (5.7.8), ExtG̃N ⊂ (ExtG)ε2/2. By (5.7.7), C̃N ⊂ Cε2/2 ⊂
(HullC)ε2/2. Hence

C̃N ⊂ (HullC)ε2/2 ⊂ C \ (ExtG)ε2/2 ⊂ C \ ExtG̃N = HullG̃N .

It follows that HullC̃N ⊂ HullG̃N .
To prove the reverse implication of (5.7.10), suppose that HullC̃N ⊂ HullG̃N .

There are three cases: HullC ⊂ HullG, HullG ⊂ HullC and HullC ∩ HullG = ∅. We
will show that the second and third case lead to a contradiction, which implies that
HullC ⊂ HullG. For the second case, suppose that HullG ⊂ HullC. Then, by the
previous paragraph, HullG̃N ⊂ HullC̃N . This contradicts the fact that HullC̃N ⊂
HullG̃N and C̃N ∩ G̃N = ∅.
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For the third case, suppose that HullC ∩ HullG = ∅. Let ℘(C) be the path from
the definition of ε3, which connects HullC with ∞ such that ℘(C) ∩ HullG = ∅ (see
Figure 5.7). By the definition of ε2, ε3, with high probability,

((HullC)min{ε2,ε3}/2 ∪ ℘(C)) ∩ (HullG)min{ε2,ε3}/2 = ∅.

By (5.7.7), for large N , with high probability,

C̃N ⊂ Cmin{ε2,ε3}/2 ⊂ (HullC)min{ε2,ε3}/2.

Similarly, G̃N ⊂ (HullG)min{ε2,ε3}/2. It follows that there exists a path from C̃N to
∞ that avoids G̃N . This contradicts the assumption that HullC̃N ⊂ HullG̃N .

Step 6. Finally we treat the small outermost clusters. Let G be a small outermost
cluster of L. By the definition of ρ, with high probability, there exists an outermost
cluster C of L with ρ < diamC < δ/2 such that dE(C,G) < δ/4. It follows that

dH(C,G) ≤ dE(C,G) + max{diamC,diamG} < 3δ/4,

dH(ExtC,ExtG) ≤ 1
2 max{diamC, diamG} < δ/4.

Note that C is large, and let C̃N be the large outermost cluster of L̃Nθ−2

N which
corresponds to C. Since C and C̃N satisfy (5.7.7) and (5.7.8), we obtain that
dH(G, C̃N ) < δ and dH(ExtG,ExtC̃N ) < δ/2.

Next, by the one-to-one correspondence between elements of C and C̃N satisfying
(5.7.7) and (5.7.8), for large N , with high probability,

dH
(⋂

C∈C ExtC,
⋂
C̃N∈C̃N ExtC̃N

)
< δ/4. (5.7.11)

Let G̃N be a small outermost cluster of L̃Nθ−2

N , then we have G̃N ⊂
⋂
C̃N∈C̃N ExtC̃N .

By (5.7.11) and the fact that L is dense in D, a.s. there exists an outermost cluster
C of L with diamC < δ/2 such that dE(C, G̃N ) < δ/2. It follows that

dH(C, G̃N ) ≤ dE(C, G̃N ) + max{diamC,diamG̃N} < δ,

dH(ExtC,ExtG̃N ) ≤ 1
2 max{diamC,diamG̃N} < δ/4.

This completes the proof.



Summary

This thesis is on probability theory, in particular on percolation, loop soups and
stochastic domination. It is based on the papers [8], [53], [7] and [52], which form the
basis for Chapters 2–5, respectively. Chapter 1 contains an introduction.

In Chapter 2 we study stochastic domination of conditioned Bernoulli random
vectors. We consider sequences of vectors Xn and Y n that each consist of n inde-
pendent Bernoulli random variables. We assume that Xn and Y n each consist of M
“blocks” such that the Bernoulli random variables in block i have success probability
pi and qi, respectively, with pi ≤ qi for all i. Here M does not depend on n and the
size of each block is essentially linear in n. We consider the conditional laws of Xn

and Y n, conditioned on the total number of successes being at least kn, where kn is
also essentially linear in n. In general, the conditional law of Xn is not necessarily
stochastically dominated by the conditional law of Y n. We give a complete answer to
the question with what maximal probability two such conditioned Bernoulli random
vectors can be ordered in any coupling, when the length n of the vectors tends to
infinity.

In Chapter 3 we study the random connection model, which is a model in contin-
uum percolation (see [39]) defined as follows. Take a Poisson point process X on Rd

of density λ and connect each pair of points x and y in X with probability g(|x− y|),
independently of other pairs of points, independently of the point process X. Here
g is a connection function, which is a non-increasing function from the positive reals
to [0, 1]. We consider a sequence of random connection models Xn, where Xn is a
Poisson point process on Rd of density λn such that λn/n

d → λ > 0. The points of
Xn are connected according to the connection function gn defined by gn(x) = g(nx),
for some connection function g. Let In be the number of isolated points in the ran-
dom connection model Xn in some bounded set K. The main result in [44] by Roy
and Sarkar is a central limit theorem for In. Although the statement of this result is
correct, the proof in [44] has errors. We explain what went wrong in the proof, and
how this can be corrected. We also prove an extension to components larger than a
single point in case the connection function has bounded support.

In Chapter 4 we study two variations on the fractal percolation model introduced
by Mandelbrot [38]. The first variation is k-fractal percolation, defined as follows.
Divide the d-dimensional unit cube in Nd equal subcubes and retain k of them in
a uniform way while the others are removed. Then iterate the procedure inside the
retained subcubes at all smaller scales. We prove that the (properly rescaled) per-
colation critical value of the model converges to the critical value of ordinary site
percolation on a particular d-dimensional lattice as N tends to infinity. This is analo-
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gous to the result of Falconer and Grimmett [24] that the critical value of Mandelbrot
fractal percolation converges to the critical value of site percolation on the same d-
dimensional lattice. The second model we study is fat fractal percolation. In this
model subcubes are retained with probability pn at iteration step n of the construc-
tion, where pn is non-decreasing in n such that

∏
n pn > 0. The Lebesgue measure

of the limit set is positive a.s. given non-extinction. We prove that either the set of
connected components larger than one point has Lebesgue measure zero a.s. or its
complement in the limit set has Lebesgue measure zero a.s.

In Chapter 5 we study the random walk loop soup, which is a Poissonian collec-
tion of lattice loops. It has been extensively studied because of its connections to
the discrete Gaussian free field [33], but was originally introduced by Lawler and
Trujillo Ferreras [31] as a discrete version of the Brownian loop soup of Lawler and
Werner [32], a conformally invariant Poissonian collection of planar loops with deep
connections to conformal loop ensembles (CLE) [48] and the Schramm-Loewner evo-
lution (SLE). Lawler and Trujillo Ferreras [31] showed that, roughly speaking, in
the continuum scaling limit, “large” lattice loops from the random walk loop soup
converge to “large” loops from the Brownian loop soup. Their results, however, do
not extend to clusters of loops, which are interesting because the connection between
Brownian loop soup and CLE goes via cluster boundaries. We study the scaling limit
of clusters of “large” lattice loops, showing that they converge to Brownian loop soup
clusters. In particular, our results imply that the collection of outer boundaries of
outermost clusters composed of “large” lattice loops converges to CLE.
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its applications, J. Statist. Phys. 115 (2004), no. 5-6, 1149–1229. MR 2065722
(2005f:82037)

[29] Gregory F. Lawler, Conformally invariant processes in the plane, Mathematical
Surveys and Monographs, vol. 114, American Mathematical Society, Providence,
RI, 2005. MR 2129588 (2006i:60003)

[30] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian
intersection exponents. II. Plane exponents, Acta Math. 187 (2001), no. 2, 275–
308. MR 1879851 (2002m:60159b)
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