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Setting

@ Low-dimensional epidemiological cohort study
e Response: y, say cholesterol
o Covariates: age, bmi, smoking, ethnicity, etc.
e n>p sayn=1000p=14



Setting

@ Low-dimensional epidemiological cohort study

e Response: y, say cholesterol
o Covariates: age, bmi, smoking, ethnicity, etc.

e n>p sayn=1000p=14

@ Aims
@ Interpretable model that explains y
@ Variable importance
© Competitive prediction



Teaser: prediction

@ Prediction evaluated by R?; Outcome: cholesterol
@ Training sets of n = 1,000, p = 14 (subsets); Complementary test sets
@ Regression models: Bayint (interactions), main effects

@ Random Forest: default, tuned
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Model

@ Regression model with two-way interactions

P
Yi=a+ Z Bjxij + Z BikTijTik + €

j=1 Gk:jk

@ Main problem: #parameters increases quadratically with p =

@ Selection/Shrinkage

2-step: only add interactions of significant main effects [and/or]
lassoint: lasso penalty on interactions

hierarchical lasso (Bien, Taylor, and Tibshirani 2013)

ridge2: differential ridge penalty main effect & interactions
Bayloc: Bayesian local shrinkage (Gelman et al. 2008)



Our solution: linked shrinkage (Bayint)

p
Yi=a+ Zﬁjl’ij + Z BikTijTik + €, € ~ N(0, a?)

j=1 Gk
Bj ~ N(0, 02732)a Bk ~ N(0, UszTkTmt)
7j ~ CT(0,1), Tine ~ U(0.01,1)

a ~ N(0,10%),0?% ~ IG(1,0.001)



Our solution: linked shrinkage (Bayint)

p
Vi=a+ Zﬁjxij + Z BikTijTak + €, € ~ N(0,0?%)

j=1 Gk
Bj ~ N(0, 02732)a Bk ~ N(0, UszTkTmt)
7j ~ CT(0,1), Tine ~ U(0.01,1)

a ~ N(0,10%),0?% ~ IG(1,0.001)

Coded in R-stan for flexibility



Comparison

Now: Focus on estimation accuracy

@ Benchmark: OLS estimates of 3 on large data set (IV = 21, 570)
e Data: 25 (near non-overlapping) subsets; n = 1,000,p = 14, ¢ = 85.

@ Outcome: cholesterol (log)
@ Metric: RMSE of Bj and Bjk:




Results 1: comparison Bayint with OLS, ridge2, Bayloc

rMSEs for main effects and interactions (after bold vertical line)
Parameters ordered by significance in master set (thin lines demarcates p < 0.01)
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Results 2: comparison Bayint with lassoint, hlasso, 2step

rMSEs for main effects and interactions (after bold vertical line)
Parameters ordered by significance in master set (thin lines demarcates p < 0.01)
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Interpretation: variable importance

e Quantifying variable importance not trivial in regression model with
interactions (Afshartous and Preston 2011)

@ Shapley values: metric quantifying variable importance per sample (Aas,
Jullum, and Lgland 2021)

Originates from game theory

Many desirable properties

Applies to complex machine learners

Expensive to compute, usually

o Explicit formula for our model: [e.g. z}; = 49, age (j) for ind 1]

o(x3;) = Bjxy; + %(Z BikTi;Thy — Z ﬁjkE[lvijlvik]),

k:k#£j k:k#j



Shapleys + intervals
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That's it!

Conclusion
Bayint + Shapleys: flexible, accurate, good prediction + interpretation
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