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A story in two parts

Part I: Regression models with many two-way interactions

Linked shrinkage

Shapleys plus intervals

Example: canonical epidemiological problem

Part II: From regression to trees and back

Translating trees to high-dimensional regression

Shapleys plus intervals

Example: academic performance of 1rst yr psychology students
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Part I: Setting

Low-dimensional epidemiological cohort study (Helius)

Response: y, say cholesterol
Covariates: age, bmi, smoking, ethnicity, etc.
Our interest: n > p, say n = 1, 000, p = 14
But large N available: N ≈ 21.500 (allows benchmarking)

Aims
1 Interpretable model that explains y
2 Variable importance
3 Competitive prediction
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p∑
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Benefits of the model

Models beats* competitors like spike-and-slab, horseshoe, hierarchical lasso,
adaptive lasso, etc on:

Parameter estimation

Prediction

Variable selection

... and also RF (prediction)

*See: https://arxiv.org/abs/2309.13998; vdW et al, Epid Meth 2024

https://arxiv.org/abs/2309.13998


Comparison with RF (prediction)

Set-up

Outcomes: Cholesterol & SBP
n = 1, 000, p = 14
ntest ≈ 20, 000
25 training-test splits
Competitors:

Bayint (our model)

MainEff (our model with
only main effects)

OLS
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Interpretation: variable importance

Quantifying variable importance not trivial in regression model with interactions
(Afshartous and Preston 2011)

Shapley values: metric quantifying variable importance per sample (Aas, Jullum,
and Løland 2021)

Originates from game theory

Uniquely combines many desirable properties

Applies to complex machine learners

Expensive to compute, usually
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Shapley values

Shapley, intuitive explanation (Molnar 2023)

The variables enter a room in random order. All variables in the room (i.e.
the coalition of players) participate in the game (= contribute to the
prediction).

Shapley value of a variable’s realization: average change in the prediction
when the variable joins the coalition

Averaged over all possible coalitions (subsets).

No refitting: predictions are marginalized w.r.t. non-players



Shapley for our model

Interventional Shapley: ignore dependencies between players and non-players

Explicit formula for the interventional Shapley for our model�: [e.g. xij = 49, age
(j) for individual i]

ϕ(xij) = βjxij +
1
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Shapleys + credible intervals

MCMC samples of β provides uncertainty estimate of ϕ(xij)
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Intervals have good coverage
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Figure: Coverages of 95% credible intervals for Shapley values of 200 random test individuals (quartiles shown).
Estimated Shapley values are obtained from 500 random subsets of size n = 1, 000.



Distinguish contribution of main and interaction effects

Global importance: Ij = 1/n
∑n

i=1 |ϕ(xij)|.
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Comparison with hierarchical lasso

Hierarchical lasso (hlasso; Bien et al. 2013)

Stronger link between interactions and main effects (selection)

Computationally efficient

Does not provide uncertainty estimates

Shapleys hlasso: simply substitute parameter estimates into formula

Comparison

For variables Age, Etnicity:

1 Estimate Shapley values for 1,000 random test individuals

2 Obtain ‘true’ Shapley values from OLS estimates on Master set
(N = 21500; p = 14; q = 85)

3 Plot estimated vs true for 25 nearly non-overlapping training sets



Shapley estimates (1: age)
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Figure: Shapley values for ‘age’ over 1,000 random test individuals (dots) for 25 training sets (displays). X-axis:
true Shapley values; Y-axis: estimated ones by Bayint (black) and hlasso (red).



Shapley estimates (2: etn1)
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Figure: Shapley values for ‘etn1’ over 1,000 random test individuals (dots) for 25 training sets (displays). X-axis:
true Shapley values; Y-axis: estimated ones by Bayint (black) and hlasso (red).



Conclusion Part I

1 Linked shrinkage useful concept for model with many interactions

2 Shapley values are useful for complex regression models

3 Appropriate regularization allows good uncertainty quantification
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Part II: From regression to trees and back

Sometimes the world is non-linear and full of complex interactions

Then, tree learners (Random Forest, XGboost, etc) are a better alternative

Current practice in epidemiology:

Use tree learners and Shap(ley) to select top k features

Apply a linear (!!!) regression model to those features to perform inference

Main aim: replace this inconsistent approach by one that is true to the tree
learner
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Main aim

Develop an inferential approach true to the tree learner

1 Translate tree learners to regression models

2 Efficient computation of Shapley values for such models

3 Inference: credible intervals for Shapley values

4 Decomposition of these into linear contributions and remainder ones



From trees to regression

1 Translate tree learners to regression models

2 Efficient computation of Shapley values for such models

3 Inference on Shapley values: credible intervals

4 Decomposition of these into linear contributions and remainder ones



From trees to regression: RuleFit

RuleFit (Friedman and
Popescu 2008; Fokkema
2020): linear regression
with rule-based interactions
and non-linear terms.

Rules taken from Ran-
dom Forest / Boosted Tree
Ensemble

Rules + Linear terms =⇒ High interpretability
Rules from Tree Ensemble =⇒ High performance



RuleFit: Example

Y = Xβ = b̂1x1 + b̂1x2 + b̂3x3 + b̂4x4 + b̂5x5

+ â1I(x2 < 3) + â2I(x2 ≥ 3)

+ â3I(x2 < 3, x5 < 7) + â4I(x2 < 3, x5 ≥ 7) + · · ·

X =


2 −0.5 5 3.1 7.1 1 0 0 1 · · ·
1.5 3.7 −0.1 4 2.4 0 1 0 0 · · ·
0.1 1.8 1 0 6 1 0 1 0 · · ·
−0.9 4.1 2.9 2.2 2.1 0 1 0 0 · · ·
−0.4 3 4.2 1.6 −0.6 0 1 0 0 · · ·


Very many rules ⇒ Sparse model



Back to our aims

1 Translate tree learners to regression models

2 Efficient computation of Shapley values for such models

3 Inference on Shapley values: credible intervals

4 Decomposition of these into linear contributions and rules

→ Explicit formula for Shapley values ϕ(xij) based on RuleFit

Computationally competitive to TreeShap (Lundberg et al. 2020)

Advantage: achieves Aims 3 and 4 as well
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Decomposition and inference

1 Translate tree learners to regression models

2 Efficient computation of Shapley values for such models

3 Inference on Shapley values: credible intervals

4 Decomposition of these into linear contributions and rules

Key ingredients for Aims 3 and 4:

Better inference: Lasso (RuleFit) → Horseshoe (Nalenz et al, 2018)

Decomposition:

Rule generation: fit trees on residuals from linear model
Joint fitting: many more rules than linear terms → differential regularization
ϕ(xij) = ϕlin(xij) + ϕrule(xij)
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Algorithm

1 Fit linear model

2 Fit random forest� on residuals (tweaked to counter over-fitting)

3 Collect rules

4 Fit horseshoe regression with unpenalized linear effects

5 Obtain posteriors from MCMC sample

6 Compute Shapley values and uncertainties with formula

�Could be replaced by one’s favorite tree algorithm



Illustration

Academic achievements; 1rst year psychology students

Response: nr of credit points or mean grade

Aim: predict and explain

n = 638

Covariates: gender, age, nationality (4), online test, test language,
score Math, score Engl, score Psych, program

Added five independent noise variables as negative controls

Data available from pre package (Fokkema 2020)



Results: prediction

Evaluation: cross-validated R2 (the higher, the better)

Outcome
Method Credit Points Mean Grade
RF 0.327 0.239
RuleFit 0.313 0.218
Tree 0.276 0.189
LassoReg 0.313 0.195
Ours§ 0.320 0.260

§No good name yet!



Predicting credit points: Shapleys + credible intervals

Gender Nationality Age Online_test Test_language Score_Engl Score_Math Score_Psych Program noise.1 noise.2 noise.3 noise.4 noise.5
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Decomposition j = Score Engl: (|ϕlin
j |, |ϕrule

j |) = (0.062, 0.016)



Predicting mean grade: Shapleys + credible intervals

Gender Nationality Age Online_test Test_language Score_Engl Score_Math Score_Psych Program noise.1 noise.2 noise.3 noise.4 noise.5
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TRUE

Decomposition j = Score Engl: (|ϕlin
j |, |ϕrule

j |) = (0.003, 0.092)



Conclusions Part II

1 Translation to regression enables interpretation true to the tree-learner

2 Shapley values are useful for complex regression models derived from
tree-learners

3 Appropriate regularization allows uncertainty quantification but more work
needed to show appropriate coverage of the intervals
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