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Setting

• Prediction or Diagnosis

• Primary data
I Variables i = 1, . . . ,p; Individuals j = 1, . . . ,n; p > n
I Focus on binary response Yj (e.g. case vs control)
I Measurements Xj = (X1j , . . . ,Xpj)
I Goal: find f such that Yj ≈ f (Xj)
I Here, f : logistic regression
I Some form of regularization required

• Focus
I Differential regularization based on prior information:

co-data



Co-data
Definition Co-data: any information on the variables that
does not use the response labels of the primary data
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Use of co-data

Groups: Co-data determine G prior groups of variables

Idea: Use different penalty weights λ1, . . . , λG across G
co-data-based groups.

G = 3 :

E.g. Ridge: argmaxβ{L(Y;β)−
∑G

g=1 λg||βg||2}

→ CV not attractive
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Empirical Bayes (EB)

Empirical Bayes: estimate hyper-parameters from data

Relation penalty parameters↔ hyper-parameters (prior)

E.g. logistic ridge: βi ∼ N(0, σ2
g), i ∈ groupg; λg = 1/(2σ2

g):

argmaxβ{L(Y;β)−
G∑

g=1

λg||βg||2} = β̂λ = β̂
MAP
σ = mode(πσ(β|Y))
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Previous work

• EB: Morris, Carlin & Louis, Efron, George, Casella, Van
Houwelingen, etc.
• Blog: David Robinson: varianceexplained.org
• Review: EB for high-dimensional prediction∗

I High-dimensional vs low-dimensional
I Theory on EB estimator (p ↑) for simple linear case
I Various EB methodologies
I Spike-and-slab

• Groups: group-lasso (Meier et al.) + many versions
thereof

∗VdW, Münch, arXiv, to appear: Scand J Stat
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Formal EB: Maximum marginal Likelihood
β = (β1, . . . , βp). Prior(s): πα(β), α = (α1, . . . , αK )

Marginal likelihood maximization:

α̂ = argmaxαML(α), with ML(α) =
∫
β

L(Y;β)πα(β)dβ,

Optimization hard, because of the high-dimensional integral

• Laplace approximation (Shun & McCullagh, JRSSB,
1995)

• EM on Gibbs samples (Casella, Biostatistics, 2001) or
on Variational Bayes approximation (Part II: Elastic Net).

• Moment estimation
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EB using moments: group-regularized ridge

Estimate σ2
g (λg ∝ σ−2

g ), for ridge: βi ∼ N(0, σ2
g), i ∈ group g

Intuitive Idea:

1. Run an initial ridge regression with one λ
2. For g = 1,2, consider mean squares of coefficients:

MSg =
1
pg

∑
i∈group g

β̂2
i

3. If MSg is large then σ2
g should be large (hence λg small)

More difficult, because E(MSg) depends also on variables
not in group g (biased estimation)
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EB using moment estimation†

Two-group example: estimate σ2
1, σ

2
2 (λg ∝ σ−2

g ), for ridge:

βi ∼ N(0, σ2
1), i ∈ group 1, βi ∼ N(0, σ2

2), i ∈ group 2

Idea: equate empirical moment(s) to theoretical ones

1
p1

∑
i∈group 1

β̂2
i ≈

1
p1

∑
i∈group 1

Eβ
[
E [β̂2

i (Y)|β]
]
:= f1(σ2

1, σ
2
2)

1
p2

∑
i∈group 2

β̂2
i ≈

1
p2

∑
i∈group 2

Eβ
[
E [β̂2

i (Y)|β]
]
:= f2(σ2

1, σ
2
2),

Result: System of equations bdata = Ax, λ−1
g ∝ σ̂2

g = xg.

†Details: Van de Wiel et al., Stat Med, 2016
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Shrink the shrinkage parameters‡

Co-data may consist of many groups (e.g. pathways)

→ σ̂2 = A−1bdata instable→ over-fitting.

Solution: shrink A to stable target matrix, e.g. T = diag(A):

Ãq = qA + (1− q)T

‡Details: Novianti et al., Bioinformatics, 2017
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Ãq = qA + (1− q)T

‡Details: Novianti et al., Bioinformatics, 2017



Effect of shrinkage
Real data, random groups of variables; Penalties: λg = λ′gλ
λ′g: lambda multiplier; log2(λ

′
g) should ≈ log2(1) = 0
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Left: No Shrinkage; Right: Shrinkage



Suppose we want variable selection...

Why can co-data help?



Suppose we want variable selection...

Nicest solution: A coherent framework for EB estimation in
a group-regularized elastic net setting§

Ad-hoc solution:
1. Estimate group penalties from ridge regression, possibly

for multiple groupings

2. Select k variables by introducing non-grouped L1

penalty

3. Refit the model using the selected variables and their
respective L2 penalties

§Part II
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Software¶

R-package GRridge, Github + Bioconductor

• Allows iteration; CVlik as stopping criterion

• Allows multiple sources of co-data, as groups

• Allows overlapping groups, e.g. pathways

• Auxiliary functions for co-data processing

• Built-in CV for comparison with ridge & lasso

¶To be discussed during course
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Part II: Group-regularized elastic net‖

Group of feature j : gj .

gj = 1

gj = 2

...

gj = G

‖Magnus Münch et al.



Group-regularized elastic net

Model

Yi |β ∼ Bern(expit(XT
i β)),

βj
ind∼ exp

[
−1

2

(
αλ ·

√
λ′g(j)|βj |+ (1− α)λ · λ′g(j)β2

j

)]

• Shrinks estimates towards zero
• ‘Global’ α and λ determine overall shrinkage
• Elastic net with penalty weights wg(j) = (λ′g(j))

1/2:
αλ|wg(j) · βj |+ (1− α)λ(wg(j) · βj)

2



Penalty parameter estimation

Cross-validation
• Prohibitively slow and unstable with even few groups

Hybrid CV and Empirical Bayes
• Fix α and estimate λ by CV for global shrinkage
• Empirical Bayes estimation of λ′ by MML

Maximum marginal likelihood (MML)

λ̂
′
= argmaxλ′

∫
β

L(Y;β)πλ′(β)dβ



Latent variables

Extra latent variables (Polson et al., 2013; Li & Nin, 2010)
• ω|β ∼

∏n
i=1PG(1, |XT

i β|), independent of Yi

• β|τ ∼
∏p

j=1N
(

0, τj−1
λ′g(j)(1−α)λτj

)
and

τ ∼
∏p

j=1 T G
(

1
2 ,

8(1−α)
α2λ

, (1,∞)
)

Computational reasons
• ω renders logistic part ‘easy’: it disappears in the

calculations
• τ makes posterior calculations of β easier
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EM algorithm

Recap Casella (2001):

λ′(k+1) = argmaxλ′Eω,β,τ |Y
[
logLλ′(Y,ω,β, τ ;λ′(k))

]
.

Exact expectation is difficult, options:

• Monte Carlo approximation: slow
• Laplace approximation: not accurate in high

dimensional space
• Variational Bayes: fast and accurate (for the posterior

mean)
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Empirical-variational Bayes

Variational Bayes
Approximate posterior factorizes:

p(ω,β, τ |Y) ≈ q(ω)q(β)q(τ ) =: Q

↓

Ep(ω,β,τ |Y) [logLλ′(·)] ≈ EQ [logLλ′(·)] =: f (λ′)

EM algorithm
• E-step is an iterative VB algorithm itself to find Q.
• M-step, argmaxλ′f (λ′), is now convex and easily solved.
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Automatic feature selection

Feature selection

1. Plug estimated penalty parameters into frequentist
elastic net:

β̂ := argmaxβ logL(Y;β)+
αλ

2

p∑
j=1

√
λ′g(j)|βj |+

(1− α)λ
2

p∑
j=1

λ′g(j)β
2
j

2. Adjust λ until desired number of features selected

• The L1-norm penalty term ensures automatic feature
selection
• Estimated penalty multipliers may enhance predictive

performance



Example: Cervical cancer

Goal: Detect CIN3 lesions, to be removed surgically



Example: Diagnostics for cervical cancer

Goal: Select markers for classifying Normal vs CIN3
→ final goal is a cheap PCR assay

Data:
• microRNA sequencing data on self-samples
• n = 56: 32 Normal, 24 CIN3
• p = 772 (after filtering lowly abundant ones).
• Sqrt-transformed
• Standardized



Co-data: Conservation status

1. Non-conserved, human only (552)
2. Conserved across mammals (72)
3. Broadly conserved, across most vertebrates (148)



Co-data results

GRridge
gren, α = 0.05
gren, α = 0.5
gren, α = 0.95
not group−regularized
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Clinician:

“That’s all nice, but does the predictive accuracy improve?”



Performance under variable selection
AUC assessed by LOOCV
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Extensions, other co-data applications

Generalized ridge: covariance structures (in progress)

Random Forest: Allows flexible co-data.∗∗

Networks: Bayesian SEM: VB + EB + prior network††

Hybrid Bayes-Empirical Bayes: λg = λλ′g, λ ∼ hyper-prior,
λ′g fixed. Example in the Review.

∗∗Te Beest, et al., BMC Bioinf, 2017
††Leday, Kpogbezan, et al., Ann Appl Stat, 2016; Biom J, 2017
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Magnus Münch (Leiden Univ / VUmc)

Cervical cancer data: Saskia Wilting (Erasmus MC), Barbara
Snoek (VUmc)

Co-data: Putri Novianti (VUmc)

Stats: Wessel van Wieringen, Carel Peeters (VUmc); Aad
van der Vaart (Leiden Univ)
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QUESTIONS?‡‡

COURSE: Please install GRridge, gren and dependencies.

See https://magnusmunch.github.io/co-data_learning/

‡‡Slides available via: www.bigstatistics.nl

https://magnusmunch.github.io/co-data_learning/
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