Improving high-dimensional prediction by empirical Bayes learning from co-data

Mark van de Wiel^{1,2,3}, Magnus Münch^{1,4}

¹Dep of Epidemiology and Biostatistics, VU University medical center
 ²Dep of Mathematics, VU University, Amsterdam, NL
 ³MRC Biostatistics unit, Cambridge University, UK (Visiting Fellow)
 ⁴Mathematical Institute, Leiden University, NL

Our group: www.bigstatistics.nl

Setting

Prediction or Diagnosis

Primary data

- ▶ Variables i = 1, ..., p; Individuals j = 1, ..., n; p > n
- Focus on binary response Y_j (e.g. case vs control)
- Measurements $\mathbf{X}_j = (X_{1j}, \ldots, X_{pj})$
- Goal: find f such that $Y_j \approx f(\mathbf{X}_j)$
- ► Here, f: logistic regression
- Some form of regularization required

Focus

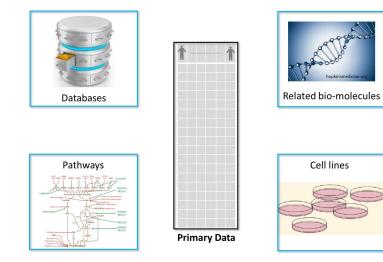
 Differential regularization based on prior information: co-data

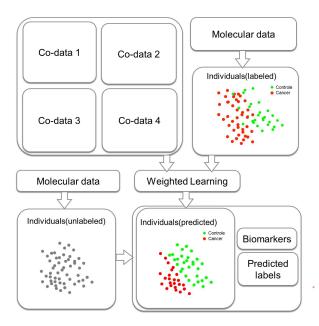
Co-data

Definition Co-data: any information on the *variables* that does not use the response labels of the primary data

Co-data

Definition Co-data: any information on the *variables* that does not use the response labels of the primary data





Use of co-data

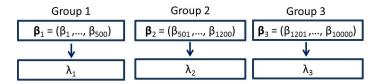
Groups: Co-data determine G prior groups of variables

Idea: Use different penalty weights $\lambda_1, \ldots, \lambda_G$ across *G* co-data-based groups.

Use of co-data

Groups: Co-data determine G prior groups of variables

Idea: Use different penalty weights $\lambda_1, \ldots, \lambda_G$ across *G* co-data-based groups. *G* = 3 :



E.g. Ridge: $\operatorname{argmax}_{\beta} \{ \mathcal{L}(\mathbf{Y}; \beta) - \sum_{g=1}^{G} \lambda_{g} ||\beta_{g}||_{2} \}$

 \rightarrow CV not attractive

Empirical Bayes (EB)

Empirical Bayes: estimate hyper-parameters from data

Relation penalty parameters \leftrightarrow hyper-parameters (prior)

Empirical Bayes (EB)

Empirical Bayes: estimate hyper-parameters from data

Relation penalty parameters \leftrightarrow hyper-parameters (prior)

E.g. logistic ridge: $\beta_i \sim N(0, \sigma_g^2), i \in \text{group}_g; \lambda_g = 1/(2\sigma_g^2)$:

$$\operatorname{argmax}_{\beta} \{ \mathcal{L}(\mathbf{Y}; \beta) - \sum_{g=1}^{G} \lambda_{g} ||\beta_{g}||_{2} \} = \hat{\boldsymbol{\beta}}_{\boldsymbol{\lambda}} = \hat{\boldsymbol{\beta}}_{\boldsymbol{\sigma}}^{\mathsf{MAP}} = \mathsf{mode}(\pi_{\boldsymbol{\sigma}}(\boldsymbol{\beta}|\mathbf{Y}))$$

Previous work

- **EB**: Morris, Carlin & Louis, Efron, George, Casella, Van Houwelingen, etc.
- Blog: David Robinson: varianceexplained.org
- Review: EB for high-dimensional prediction*
 - High-dimensional vs low-dimensional
 - Theory on EB estimator $(p \uparrow)$ for simple linear case
 - Various EB methodologies
 - Spike-and-slab

^{*}VdW, Münch, arXiv, to appear: Scand J Stat

Previous work

- **EB**: Morris, Carlin & Louis, Efron, George, Casella, Van Houwelingen, etc.
- Blog: David Robinson: varianceexplained.org
- Review: EB for high-dimensional prediction*
 - High-dimensional vs low-dimensional
 - Theory on EB estimator $(p \uparrow)$ for simple linear case
 - Various EB methodologies
 - Spike-and-slab
- **Groups**: group-lasso (Meier et al.) + many versions thereof

^{*}VdW, Münch, arXiv, to appear: Scand J Stat

Formal EB: Maximum marginal Likelihood $\beta = (\beta_1, ..., \beta_p)$. Prior(s): $\pi_{\alpha}(\beta), \alpha = (\alpha_1, ..., \alpha_K)$

Marginal likelihood maximization:

$$\hat{\alpha} = \operatorname{argmax}_{\alpha} \mathsf{ML}(\alpha), \text{ with } \mathsf{ML}(\alpha) = \int_{\beta} \mathcal{L}(\mathbf{Y}; \beta) \pi_{\alpha}(\beta) d\beta,$$

Formal EB: Maximum marginal Likelihood $\beta = (\beta_1, ..., \beta_p)$. Prior(s): $\pi_{\alpha}(\beta), \alpha = (\alpha_1, ..., \alpha_K)$

Marginal likelihood maximization:

$$\hat{\boldsymbol{\alpha}} = \operatorname{argmax}_{\boldsymbol{\alpha}} \mathsf{ML}(\boldsymbol{\alpha}), \text{ with } \mathsf{ML}(\boldsymbol{\alpha}) = \int_{\boldsymbol{\beta}} \mathcal{L}(\mathbf{Y}; \boldsymbol{\beta}) \pi_{\boldsymbol{\alpha}}(\boldsymbol{\beta}) d\boldsymbol{\beta},$$

Optimization hard, because of the high-dimensional integral

- Laplace approximation (Shun & McCullagh, *JRSSB*, 1995)
- EM on Gibbs samples (Casella, *Biostatistics*, 2001) or on Variational Bayes approximation (Part II: Elastic Net).
- Moment estimation

EB using moments: group-regularized ridge

Estimate σ_g^2 ($\lambda_g \propto \sigma_g^{-2}$), for ridge: $\beta_i \sim N(0, \sigma_g^2), i \in \text{group } g$

EB using moments: group-regularized ridge

Estimate σ_g^2 ($\lambda_g \propto \sigma_g^{-2}$), for ridge: $\beta_i \sim N(0, \sigma_g^2), i \in \text{group } g$

Intuitive Idea:

- **1.** Run an initial ridge regression with one λ
- **2.** For g = 1, 2, consider mean squares of coefficients:

$$MS_g = rac{1}{p_g} \sum_{i \in ext{group } g} \hat{eta}_i^2$$

3. If MS_g is large then σ_g^2 should be large (hence λ_g small)

EB using moments: group-regularized ridge

Estimate σ_g^2 ($\lambda_g \propto \sigma_g^{-2}$), for ridge: $\beta_i \sim N(0, \sigma_g^2), i \in \text{group } g$

Intuitive Idea:

- **1.** Run an initial ridge regression with one λ
- **2.** For g = 1, 2, consider mean squares of coefficients:

$$MS_g = rac{1}{
ho_g} \sum_{i \in ext{group } g} \hat{eta}_i^2$$

3. If MS_g is large then σ_g^2 should be large (hence λ_g small)

More difficult, because $E(MS_g)$ depends also on variables *not in* group *g* (biased estimation)

EB using moment estimation[†]

Two-group example: estimate σ_1^2, σ_2^2 ($\lambda_g \propto \sigma_g^{-2}$), for ridge:

 $\beta_i \sim N(0, \sigma_1^2), i \in \text{group 1}, \beta_i \sim N(0, \sigma_2^2), i \in \text{group 2}$

Idea: equate empirical moment(s) to theoretical ones

[†]Details: Van de Wiel et al., *Stat Med*, 2016

EB using moment estimation[†]

Two-group example: estimate σ_1^2, σ_2^2 ($\lambda_g \propto \sigma_g^{-2}$), for ridge:

 $\beta_i \sim N(0, \sigma_1^2), i \in \text{group 1}, \beta_i \sim N(0, \sigma_2^2), i \in \text{group 2}$

Idea: equate empirical moment(s) to theoretical ones

$$\frac{1}{p_1} \sum_{i \in \text{group 1}} \hat{\beta}_i^2 \approx \frac{1}{p_1} \sum_{i \in \text{group 1}} E_\beta \left[E[\hat{\beta}_i^2(\mathbf{Y})|\beta] \right] := f_1(\sigma_1^2, \sigma_2^2)$$
$$\frac{1}{p_2} \sum_{i \in \text{group 2}} \hat{\beta}_i^2 \approx \frac{1}{p_2} \sum_{i \in \text{group 2}} E_\beta \left[E[\hat{\beta}_i^2(\mathbf{Y})|\beta] \right] := f_2(\sigma_1^2, \sigma_2^2),$$

Result: System of equations $\mathbf{b}_{data} = A\mathbf{x}$, $\lambda_g^{-1} \propto \hat{\sigma}_g^2 = x_g$.

[†]Details: Van de Wiel et al., Stat Med, 2016

Shrink the shrinkage parameters[‡]

Co-data may consist of many groups (e.g. pathways)

 $ightarrow \hat{\sigma}^2 = A^{-1} \mathbf{b}_{data}$ instable ightarrow over-fitting.

[‡]Details: Novianti et al., *Bioinformatics*, 2017

Shrink the shrinkage parameters[‡]

Co-data may consist of many groups (e.g. pathways)

 $ightarrow \hat{\sigma}^2 = A^{-1} \mathbf{b}_{data}$ instable ightarrow over-fitting.

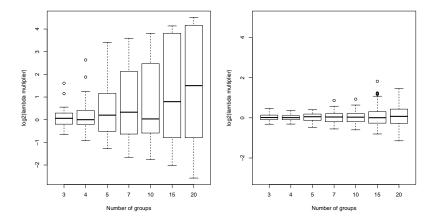
Solution: shrink A to stable target matrix, e.g. T = diag(A):

$$\tilde{A}_q = qA + (1-q)T$$

[‡]Details: Novianti et al., *Bioinformatics*, 2017

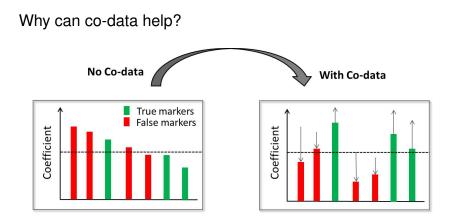
Effect of shrinkage

Real data, *random* groups of variables; Penalties: $\lambda_g = \lambda'_g \lambda_g$: lambda multiplier; $\log_2(\lambda'_g)$ should $\approx \log_2(1) = 0$



Left: No Shrinkage; Right: Shrinkage

Suppose we want variable selection...



Suppose we want variable selection...

Nicest solution: A coherent framework for EB estimation in a group-regularized elastic net setting[§]

Suppose we want variable selection...

Nicest solution: A coherent framework for EB estimation in a group-regularized elastic net setting[§]

Ad-hoc solution:

- **1.** Estimate group penalties from ridge regression, possibly for multiple groupings
- Select k variables by introducing non-grouped L₁ penalty
- 3. Refit the model using the selected variables and their respective *L*₂ penalties

Software[¶]

R-package GRridge, Github + Bioconductor

[¶]To be discussed during course

Software[¶]

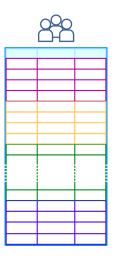
R-package GRridge, Github + Bioconductor

- Allows iteration; CVlik as stopping criterion
- Allows *multiple* sources of co-data, as groups
- Allows overlapping groups, e.g. pathways
- Auxiliary functions for co-data processing
- Built-in CV for comparison with ridge & lasso

[¶]To be discussed during course

Part II: Group-regularized elastic net

Group of feature *j*: g_j .



 $g_j = 1$

*g*_j = 2

ŝ

 $g_j = G$

Magnus Münch et al.

Group-regularized elastic net

Model

$$egin{aligned} & \mathbf{Y}_i | oldsymbol{eta} \sim \mathsf{Bern}(\mathsf{expit}(\mathbf{X}_i^{\mathsf{T}}oldsymbol{eta})), \ & eta_j \stackrel{\mathit{ind}}{\sim} \exp\left[-rac{1}{2}\left(lpha\lambda\cdot\sqrt{\lambda'_{g(j)}}|eta_j|+(1-lpha)\lambda\cdot\lambda'_{g(j)}eta_j^2
ight)
ight]. \end{aligned}$$

- Shrinks estimates towards zero
- 'Global' α and λ determine overall shrinkage
- Elastic net with penalty weights $w_{g(j)} = (\lambda'_{g(j)})^{1/2}$: $\alpha \lambda |w_{g(j)} \cdot \beta_j| + (1 - \alpha) \lambda (w_{g(j)} \cdot \beta_j)^2$

Penalty parameter estimation

Cross-validation

· Prohibitively slow and unstable with even few groups

Hybrid CV and Empirical Bayes

- Fix α and estimate λ by CV for global shrinkage
- Empirical Bayes estimation of λ' by MML

Maximum marginal likelihood (MML)

$$\hat{oldsymbol{\lambda}}' = \operatorname{argmax}_{oldsymbol{\lambda}'} \int_{oldsymbol{eta}} \mathcal{L}(oldsymbol{Y};oldsymbol{eta}) \pi_{oldsymbol{\lambda}'}(oldsymbol{eta}) doldsymbol{eta}$$

Latent variables

Extra latent variables (Polson et al., 2013; Li & Nin, 2010)

• $\boldsymbol{\omega}|\boldsymbol{\beta} \sim \prod_{i=1}^{n} \mathcal{PG}(1, |\mathbf{X}_{i}^{\mathsf{T}}\boldsymbol{\beta}|)$, independent of Y_{i}

•
$$\beta | \tau \sim \prod_{j=1}^{p} \mathcal{N}\left(0, \frac{\tau_j - 1}{\lambda'_{g(j)}(1 - \alpha)\lambda\tau_j}\right)$$
 and $\tau \sim \prod_{j=1}^{p} \mathcal{TG}\left(\frac{1}{2}, \frac{8(1 - \alpha)}{\alpha^2\lambda}, (1, \infty)\right)$

Latent variables

Extra latent variables (Polson et al., 2013; Li & Nin, 2010)

• $\boldsymbol{\omega}|\boldsymbol{\beta} \sim \prod_{i=1}^{n} \mathcal{PG}(1, |\mathbf{X}_{i}^{\mathsf{T}}\boldsymbol{\beta}|), \text{ independent of } Y_{i}$

•
$$\beta | \tau \sim \prod_{j=1}^{p} \mathcal{N}\left(0, \frac{\tau_j - 1}{\lambda'_{g(j)}(1 - \alpha)\lambda \tau_j}\right)$$
 and $\tau \sim \prod_{j=1}^{p} \mathcal{TG}\left(\frac{1}{2}, \frac{8(1 - \alpha)}{\alpha^2 \lambda}, (1, \infty)\right)$

Computational reasons

- ω renders logistic part 'easy': it disappears in the calculations
- au makes posterior calculations of eta easier

EM algorithm

Recap Casella (2001):

$$\boldsymbol{\lambda}^{\prime(k+1)} = \operatorname{argmax}_{\boldsymbol{\lambda}^{\prime}} \mathbb{E}_{\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\tau} \mid \mathbf{Y}} \left[\log \mathcal{L}_{\boldsymbol{\lambda}^{\prime}}(\mathbf{Y},\boldsymbol{\omega},\boldsymbol{\beta},\boldsymbol{\tau};\boldsymbol{\lambda}^{\prime(k)}) \right].$$

EM algorithm

Recap Casella (2001):

$$\lambda'^{(k+1)} = \operatorname{argmax}_{\lambda'} \mathbb{E}_{\omega, eta, au \mid \mathbf{Y}} \left[\log \mathcal{L}_{\lambda'}(\mathbf{Y}, \omega, eta, au; \lambda'^{(k)})
ight].$$

Exact expectation is difficult, options:

- Monte Carlo approximation: slow
- Laplace approximation: not accurate in high dimensional space
- Variational Bayes: fast and accurate (for the posterior mean)

Empirical-variational Bayes

Variational Bayes

Approximate posterior factorizes:

$$p(\omega,eta, au|\mathbf{Y})pprox q(\omega)q(eta)q(au)=:Q$$
 \downarrow
 $\mathbb{E}_{
ho(\omega,eta, au|\mathbf{Y})}\left[\log\mathcal{L}_{\lambda'}(\cdot)
ight]pprox \mathbb{E}_{Q}\left[\log\mathcal{L}_{\lambda'}(\cdot)
ight]=:f(\lambda')$

Empirical-variational Bayes

Variational Bayes

Approximate posterior factorizes:

$$egin{aligned} & p(\omega,eta, au|\mathbf{Y})pprox q(\omega)q(eta)q(au)=:Q \ & \downarrow \ & \mathbb{E}_{p(\omega,eta, au|\mathbf{Y})}\left[\log\mathcal{L}_{\lambda'}(\cdot)
ight]pprox \mathbb{E}_{Q}\left[\log\mathcal{L}_{\lambda'}(\cdot)
ight]=:f(\lambda') \end{aligned}$$

EM algorithm

- E-step is an iterative VB algorithm itself to find *Q*.
- M-step, $\operatorname{argmax}_{\lambda'} f(\lambda')$, is now convex and easily solved.

Automatic feature selection

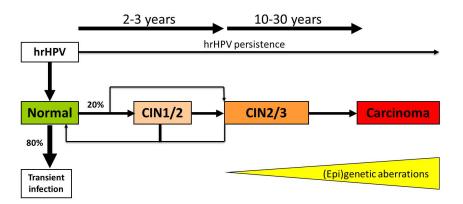
Feature selection

1. Plug estimated penalty parameters into frequentist elastic net:

$$\hat{\boldsymbol{\beta}} := \operatorname{argmax}_{\boldsymbol{\beta}} \log \mathcal{L}(\mathbf{Y}; \boldsymbol{\beta}) + \frac{\alpha \lambda}{2} \sum_{j=1}^{p} \sqrt{\lambda'_{g(j)}} |\beta_j| + \frac{(1-\alpha)\lambda}{2} \sum_{j=1}^{p} \lambda'_{g(j)} \beta_j^2$$

- 2. Adjust λ until desired number of features selected
 - The *L*₁-norm penalty term ensures automatic feature selection
 - Estimated penalty multipliers may enhance predictive performance

Example: Cervical cancer



Goal: Detect CIN3 lesions, to be removed surgically

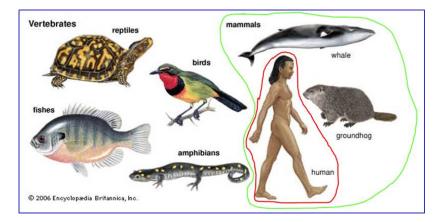
Example: Diagnostics for cervical cancer

Data:

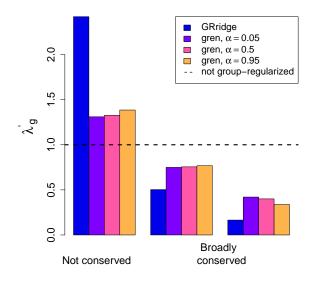
- microRNA sequencing data on *self-samples*
- *n* = 56: 32 Normal, 24 CIN3
- p = 772 (after filtering lowly abundant ones).
- Sqrt-transformed
- Standardized

Co-data: Conservation status

- 1. Non-conserved, human only (552)
- 2. Conserved across mammals (72)
- 3. Broadly conserved, across most vertebrates (148)



Co-data results



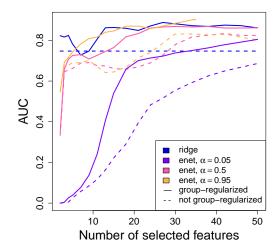
· · · · · ·

Clinician:

"That's all nice, but does the predictive accuracy improve?"

Performance under variable selection

AUC assessed by LOOCV



Extensions, other co-data applications

Generalized ridge: covariance structures (in progress)

Random Forest: Allows flexible co-data.**

Networks: Bayesian SEM: VB + EB + prior network^{††}

Hybrid Bayes-Empirical Bayes: $\lambda_g = \lambda \lambda'_g$, $\lambda \sim$ hyper-prior, λ'_g fixed. Example in the Review.

^{**}Te Beest, et al., *BMC Bioinf*, 2017

^{††}Leday, Kpogbezan, et al., *Ann Appl Stat*, 2016; *Biom J*, 2017

Thanks

Magnus Münch (Leiden Univ / VUmc)

Thanks

Magnus Münch (Leiden Univ / VUmc)

Cervical cancer data: Saskia Wilting (Erasmus MC), Barbara Snoek (VUmc)

Co-data: Putri Novianti (VUmc)

Stats: Wessel van Wieringen, Carel Peeters (VUmc); Aad van der Vaart (Leiden Univ)

QUESTIONS?^{‡‡}

COURSE: Please install GRridge, gren and dependencies.

See https://magnusmunch.github.io/co-data_learning/

^{‡‡}Slides available via: www.bigstatistics.nl