Empirical Bayes learning from co-data in high-dimensional prediction settings

Mark van de Wiel^{1,2}

¹Dep of Epidemiology and Biostatistics, VU University medical center (VUmc)

²Dep of Mathematics, VU University, Amsterdam, The Netherlands

Contributions by: Putri Novianti (VUmc), Magnus Münch (Leiden, VUmc)

Our group: www.bigstatistics.nl

Setting

Prediction or Classification

Primary data

- ▶ Variables i = 1, ..., p; Individuals j = 1, ..., n; p > n
- Focus on binary response Y_j (e.g. case vs control)
- Measurements $\mathbf{X}_j = (X_{1j}, \ldots, X_{pj})$
- Goal: find f such that $Y_j \approx f(\mathbf{X}_j)$
- ► f: logistic regression, random forest, spike-and-slab, etc.
- Some form of regularization required

• Focus

 Differential regularization based on prior information: Co-data

Co-data

Definition Co-data: any information on the *variables* not using the response labels of the primary data

Co-data

Definition Co-data: any information on the *variables* not using the response labels of the primary data

Use of co-data

Groups: Co-data determine G prior groups of variables

Idea: Use different penalty weights $\lambda_1, \ldots, \lambda_G$ across *G* co-data-based groups. E.g. in ridge:

$$\operatorname{argmax}_{\beta}\mathcal{L}(\mathbf{Y}; \beta) - \sum_{g=1}^{G} \lambda_{g} ||\beta_{g}||_{2}$$

Use of co-data

Groups: Co-data determine G prior groups of variables

Idea: Use different penalty weights $\lambda_1, \ldots, \lambda_G$ across *G* co-data-based groups. E.g. in ridge:

$$\operatorname{argmax}_{\beta}\mathcal{L}(\mathbf{Y}; \boldsymbol{\beta}) - \sum_{g=1}^{G} \lambda_{g} ||\boldsymbol{\beta}_{g}||_{2}$$

Challenge: Estimation of hyperparameters λ_g

CV not attractive

Definition*: EB estimates the prior from data

- \rightarrow Parametric form: estimate prior parameters
- \rightarrow Penalized regression: estimate penalty parameters; via link with prior

^{*}Excellent discussions: Carlin & Louis (2000), Efron (2010), Van Houwelingen (2014)

Definition*: EB estimates the prior from data

→ Parametric form: estimate prior parameters
→ Penalized regression: estimate penalty parameters

 \rightarrow Penalized regression: estimate penalty parameters; via link with prior

Why Empirical Bayes (EB)?

• EB estimators tend to improve for increasing *p*

^{*}Excellent discussions: Carlin & Louis (2000), Efron (2010), Van Houwelingen (2014)

Definition*: EB estimates the prior from data

 \rightarrow Parametric form: estimate prior parameters \rightarrow Penalized regression: estimate penalty parameters; via link with prior

Why Empirical Bayes (EB)?

- EB estimators tend to improve for increasing p
- EB fits well with allowing for prior information: can improve predictions

^{*}Excellent discussions: Carlin & Louis (2000), Efron (2010), Van Houwelingen (2014)

Definition*: EB estimates the prior from data

 \rightarrow Parametric form: estimate prior parameters \rightarrow Penalized regression: estimate penalty parameters; via link with prior

Why Empirical Bayes (EB)?

- EB estimators tend to improve for increasing p
- EB fits well with allowing for prior information: can improve predictions
- Computationally nicer than Full Bayes and CV

^{*}Excellent discussions: Carlin & Louis (2000), Efron (2010), Van Houwelingen (2014)

Formal EB: Maximum marginal Likelihood

$$\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)$$
. Prior(s): $\pi_{\boldsymbol{\alpha}}(\boldsymbol{\beta}), \, \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_K)$

Marginal likelihood maximization:

$$\hat{\alpha} = \operatorname{argmax}_{\alpha} \mathsf{ML}(\alpha), \text{ with } \mathsf{ML}(\alpha) = \int_{\beta} \mathcal{L}(\mathbf{Y}; \beta) \pi_{\alpha}(\beta) d\beta,$$

Formal EB: Maximum marginal Likelihood

$$\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)$$
. Prior(s): $\pi_{\boldsymbol{\alpha}}(\boldsymbol{\beta}), \, \boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_K)$

Marginal likelihood maximization:

$$\hat{\alpha} = \operatorname{argmax}_{\alpha} \mathsf{ML}(\alpha), \text{ with } \mathsf{ML}(\alpha) = \int_{\beta} \mathcal{L}(\mathbf{Y}; \beta) \pi_{\alpha}(\beta) d\beta,$$

High-dimensional integral \rightarrow optimization hard

High-dimensional integral

Solutions:

- Laplace approximation (Shun & McCullagh, 1995)
- EM on Gibbs samples (Casella, 2001). Conceptually easy, but computationally very intensive.
- EM on Variational Bayes approximation (Bernardo et al., 2003). Fast, but dedicated approximations[†].

[†]Work in progress for elastic net and spike-and-slab

High-dimensional integral

Solutions:

- Laplace approximation (Shun & McCullagh, 1995)
- EM on Gibbs samples (Casella, 2001). Conceptually easy, but computationally very intensive.
- EM on Variational Bayes approximation (Bernardo et al., 2003). Fast, but dedicated approximations[†].
- Or resort to alternative EB approach

[†]Work in progress for elastic net and spike-and-slab

Back to the ridge example

Empirical Bayes (EB) estimation of λ_g explores

$$\operatorname{argmax}_{\beta}\mathcal{L}(\mathbf{Y}; \beta) - \sum_{g=1}^{G} \lambda_{g} ||\beta_{g}||_{2} = \beta_{MAP},$$

when

$$j \in \text{Group } g : \beta_j \sim N(0, \tau_g^2), \tau_g^{-2} \propto \lambda_g$$

Back to the ridge example

Empirical Bayes (EB) estimation of λ_g explores

$$\operatorname{argmax}_{eta}\mathcal{L}(\mathbf{Y};m{eta}) - \sum_{g=1}^{G}\lambda_{g}||m{eta}_{g}||_{2} = m{eta}_{\mathsf{MAP}},$$

when

$$j \in \text{Group } g : \beta_j \sim N(0, \tau_g^2), \tau_g^{-2} \propto \lambda_g$$

 \rightarrow EB estimate of τ_g^2 renders estimate of λ_g .

EB for group-regularized ridge[‡]

Aim: $\hat{\tau}_g^2$ for group-regularized ridge: $\beta_i \sim N(0, \tau_g^2), i \in \mathcal{G}_g$

[‡]Details: Van de Wiel et al., *Stat Med*, 2016

EB for group-regularized ridge[‡]

Aim: $\hat{\tau}_{g}^{2}$ for group-regularized ridge: $\beta_{i} \sim N(0, \tau_{g}^{2}), i \in \mathcal{G}_{g}$ Initial: $\hat{\beta}_{i} = \hat{\beta}_{i}^{\lambda_{0}}$. Moment equations $g = 1, \dots, G$. G = 2: $\frac{1}{p_{1}} \sum_{i \in \mathcal{G}_{1}} \hat{\beta}_{i}^{2} \approx \frac{1}{p_{1}} \sum_{i \in \mathcal{G}_{1}} E_{\beta} \left[E[\hat{\beta}_{i}^{2}(\mathbf{Y})|\beta] \right] := h_{1}(\tau_{1}^{2}, \tau_{2}^{2})$ $\frac{1}{p_{2}} \sum_{i \in \mathcal{G}_{2}} \hat{\beta}_{i}^{2} \approx \frac{1}{p_{2}} \sum_{i \in \mathcal{G}_{2}} E_{\beta} \left[E[\hat{\beta}_{i}^{2}(\mathbf{Y})|\beta] \right] := h_{2}(\tau_{1}^{2}, \tau_{2}^{2}),$

[‡]Details: Van de Wiel et al., Stat Med, 2016

EB for group-regularized ridge[‡]

Aim: $\hat{\tau}_{g}^{2}$ for group-regularized ridge: $\beta_{i} \sim N(0, \tau_{g}^{2}), i \in \mathcal{G}_{g}$ Initial: $\hat{\beta}_{i} = \hat{\beta}_{i}^{\lambda_{0}}$. Moment equations $g = 1, \dots, G$. G = 2: $\frac{1}{p_{1}} \sum_{i \in \mathcal{G}_{1}} \hat{\beta}_{i}^{2} \approx \frac{1}{p_{1}} \sum_{i \in \mathcal{G}_{1}} E_{\beta} \left[E[\hat{\beta}_{i}^{2}(\mathbf{Y})|\beta] \right] := h_{1}(\tau_{1}^{2}, \tau_{2}^{2})$ $\frac{1}{p_{2}} \sum_{i \in \mathcal{G}_{2}} \hat{\beta}_{i}^{2} \approx \frac{1}{p_{2}} \sum_{i \in \mathcal{G}_{2}} E_{\beta} \left[E[\hat{\beta}_{i}^{2}(\mathbf{Y})|\beta] \right] := h_{2}(\tau_{1}^{2}, \tau_{2}^{2}),$

In general: System of G linear equations $\mathbf{b}_{data} = A\mathbf{t}$

Solution: $t = (\hat{\tau}_1^2, ..., \hat{\tau}_g^2)$.

[‡]Details: Van de Wiel et al., *Stat Med*, 2016

Extension: Stability §

- Some co-data render *many* groups: e.g. pathways
- *G* large: system $\mathbf{b}_{data} = A\mathbf{t}$ becomes unstable
- Need to stabilize solution

Solutions

- 1. Enforce monotony when grouping based on continuous co-data (e.g. external p-values)
- **2.** Shrink *A* to a stable target *T*: $\tilde{A}_q = qA + (1 q)T$.

[§]Details: Novianti et al., *Bioinformatics*, 2017

Effect of shrinkage of A

Real data, random groups of variables

Left: No Shrinkage; Right: Shrinkage

Variable selection

Variable selection

Current solution:

- 1. Estimate group penalties from ridge regression, possibly for multiple groupings
- Select k variables by introducing non-grouped L₁ penalty (i.e. thresholding)
- 3. Refit the model using the selected variables and their respective L_2 penalties

Variable selection

Current solution:

- 1. Estimate group penalties from ridge regression, possibly for multiple groupings
- Select k variables by introducing non-grouped L₁ penalty (i.e. thresholding)
- 3. Refit the model using the selected variables and their respective *L*₂ penalties

"Bet on sparsity": yes, but after penalty weighting

Software¶

R-package GRridge, Github + Bioconductor:

- Logistic, linear and survival
- Auxiliary functions for co-data processing (from TCGA etc.)
- Allows unpenalized covariates
- Built-in CV for comparison with ridge & lasso

[¶]Details: Novianti et al., *Bioinformatics*, 2017

Software¶

R-package GRridge, Github + Bioconductor:

- Logistic, linear and survival
- Auxiliary functions for co-data processing (from TCGA etc.)
- Allows unpenalized covariates
- Built-in CV for comparison with ridge & lasso

Comparison (one grouping only): Sparse group lasso, SGL (Simon et al., *J Comp Graph Stat*, 2013).

[¶]Details: Novianti et al., *Bioinformatics*, 2017

Example: Diagnostics for cervical cancer

Data:

- microRNA sequencing data
- *n* = 56: 32 Normal, 24 CIN3
- p = 772 (after filtering lowly abundant ones).
- Sqrt-transformed
- Standardized

Co-data 1: Conservation status

- 1. Non-conserved, human only (552)
- 2. Conserved across mammals (72)
- 3. Broadly conserved, across most vertebrates (148)

Co-data 2: Standard deviation

- Current practice: standardize variable *j* by sd: s_j → effective penalty λs²_j (Zwiener et al, 2014)
 - \rightarrow too large advantage for small s_j 's?

Co-data 2: Standard deviation

- Current practice: standardize variable *j* by sd: *s_j* → effective penalty λ*s*²_j (Zwiener et al, 2014)
 → too large advantage for small *s_i*'s?
- Our solution:
 - 1. Standardize by s_i
 - **2.** *G* groups of variables with decreasing s_j
 - **3.** Effective penalty $j \in \mathcal{G}_g$: $\lambda_j = \hat{\tau}_g^{-2} \lambda s_j^2$

Co-data 2: Standard deviation

- Current practice: standardize variable *j* by sd: s_j
 → effective penalty λs²_j (Zwiener et al, 2014)
 → too large advantage for small s_i's?
- Our solution:
 - 1. Standardize by s_i
 - **2.** *G* groups of variables with decreasing s_j
 - **3.** Effective penalty $j \in \mathcal{G}_g$: $\lambda_j = \hat{\tau}_g^{-2} \lambda s_j^2$
- Allows a more non-parametric link between s_j and λ_j

Co-data results

For $j \in \mathcal{G}_g$, penalty factor: $\lambda_g' \propto \tau_g^{-2}$

Co-data results

For $j \in \mathcal{G}_g$, penalty factor: $\lambda'_g \propto \tau_g^{-2}$

Conservation status:

- **1.** Non-conserved (552): $\lambda'_1 = 1.84$
- **2.** Conserved across mammals (72): $\lambda'_2 = 0.61$
- 3. Broadly conserved across vertebrates (148): $\lambda'_3 = 0.30$

Co-data results

For $j \in \mathcal{G}_g$, penalty factor: $\lambda'_g \propto \tau_g^{-2}$

Conservation status:

- **1.** Non-conserved (552): $\lambda'_1 = 1.84$
- **2.** Conserved across mammals (72): $\lambda'_2 = 0.61$
- 3. Broadly conserved across vertebrates (148): $\lambda'_3 = 0.30$

Standard deviation:

Range from $\lambda'_1 = 0.56$ (large s.d.) to $\lambda'_{10} = 1.80$ (small s.d.)

 \rightarrow Indeed, partly 'undoes' the effect of standardization (for $j \in \mathcal{G}_g$: $\lambda_j \propto \lambda'_g s_j^2$).

Clinician:

"That's all nice, but does the predictive accuracy improve?"

"Do I get the good biomarkers?"

Performance under variable selection

AUC assessed by LOOCV

GRridge + EN, Sparse group-lasso, Lasso, Elastic Net

Stability of selection

50 re-sampled versions of data set. Overlap in selected variables between pairs of re-samples

Other applications, extensions

Hybrid Bayes - Empirical Bayes

• $\lambda_g = \lambda'_g \lambda$. λ'_g : EB; Common λ : Full Bayes (prior)

^{||}*Ann Appl Stat*, 2016; *Biom J*, 2017 **arXiv, 2017

Other applications, extensions

Hybrid Bayes - Empirical Bayes

• $\lambda_g = \lambda'_g \lambda$. λ'_g : EB; Common λ : Full Bayes (prior)

Networks (Gwenaël Leday, Gino Kpogbezan et al.[∥])

• Bayesian SEM: Variational Bayes + EB + prior network

Other applications, extensions

Hybrid Bayes - Empirical Bayes

• $\lambda_g = \lambda'_g \lambda$. λ'_g : EB; Common λ : Full Bayes (prior)

Networks (Gwenaël Leday, Gino Kpogbezan et al.[∥])

• Bayesian SEM: Variational Bayes + EB + prior network

Random Forest (Dennis te Beest**)

Co-data moderated Random Forest

Take home

Empirical Bayes...

... is a versatile technique to learn

1. from a lot...(many variables)

2. ...and a lot more (co-data)

Acknowledgements

Putri Novianti (GRridge)

+ miRNAseq data: Barbara Snoek, Saskia Wilting, Renske Steenbergen (VUmc)

+ Grant: NWO ZONMW-TOP

Details

Method: Van de Wiel MA, Lien TG, Verlaat W, Van Wieringen WN, Wilting SM (2016). Better prediction by use of co-data: Adaptive group-regularized ridge regression. *Stat Med.*, **35**, 368-381.

Software: Novianti PW, Snoek B, Wilting SM, van de Wiel MA (2017). Better diagnostic signatures from RNAseq data through use of auxiliary co-data. *Bioinformatics*, **33**, 1572-1574.

QUESTIONS?^{††}

^{††}Slides available via: www.bigstatistics.nl