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Setting

e Prediction or Classification

e Primary data
» Variablesi=1,...,p;Individuals j=1,... , n;p>n
» Focus on binary response Y; (e.g. case vs control)
» Measurements X; = (Xj,..., Xy)
» Goal: find f such that Y; ~ f(X;)
» f: logistic regression, random forest, spike-and-slab, etc.
» Some form of regularization required

e Focus

» Differential regularization based on prior information:
Co-data



Co-data

Definition Co-data: any information on the variables not
using the response labels of the primary data
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Related bio-molecules

Primary Data

Cell lines
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Use of co-data

Groups: Co-data determine G prior groups of variables

Idea: Use different penalty weights \¢, ..., A\g across G
co-data-based groups. E.g. in ridge:

argmax L ( ZAgHﬁgHz



Use of co-data

Groups: Co-data determine G prior groups of variables

Idea: Use different penalty weights \¢, ..., A\g across G
co-data-based groups. E.g. in ridge:

argmax ;L ZAgHﬁgHz

Challenge: Estimation of hyperparameters )\

CV not attractive
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Empirical Bayes (EB)

Definition*: EB estimates the prior from data

— Parametric form: estimate prior parameters
— Penalized regression: estimate penalty parameters; via
link with prior

Why Empirical Bayes (EB)?
e EB estimators tend to improve for increasing p

o EB fits well with allowing for prior information: can
improve predictions

e Computationally nicer than Full Bayes and CV

*Excellent discussions: Carlin & Louis (2000), Efron (2010), Van
Houwelingen (2014)



Formal EB: Maximum marginal Likelihood

B = (p1,...,Bp). Prior(s): mo(B), ¢ = (a1, ..., ak)

Marginal likelihood maximization:

& — argmax_ML(a), with ML(c) = /[3 L(Y: B)ra(B)dB,



Formal EB: Maximum marginal Likelihood

B = (p1,...,Bp). Prior(s): mo(B), ¢ = (a1, ..., ak)

Marginal likelihood maximization:

& — argmax_ML(a), with ML(c) = /B L(Y: B)ra(B)dB,

High-dimensional integral — optimization hard



High-dimensional integral

Solutions:
e Laplace approximation (Shun & McCullagh, 1995)

e EM on Gibbs samples (Casella, 2001). Conceptually
easy, but computationally very intensive.

e EM on Variational Bayes approximation (Bernardo et al.,
2003). Fast, but dedicated approximations'.

fWork in progress for elastic net and spike-and-slab



High-dimensional integral

Solutions:
e Laplace approximation (Shun & McCullagh, 1995)

e EM on Gibbs samples (Casella, 2001). Conceptually
easy, but computationally very intensive.

e EM on Variational Bayes approximation (Bernardo et al.,
2003). Fast, but dedicated approximations'.

e Or resort to alternative EB approach

fWork in progress for elastic net and spike-and-slab



Back to the ridge example
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j€Group g: B ~ N(0,75),7,% < Ag



Back to the ridge example

Empirical Bayes (EB) estimation of A\, explores

argmaxgL(Y Z AglBgll2 = Buap,

when
j€Group g: B ~ N(0,75),7,% < Ag

— EB estimate of 7] renders estimate of \,.



EB for group-regularized ridge*

Aim: “gz for group-regularized ridge: 5; ~ N(O, 7'5), i€ Gy

fDetails: Van de Wiel et al., Stat Med, 2016
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EB for group-regularized ridge*

Aim: “5 for group-regularized ridge: 5; ~ N(O, 7'5), i€ Gy

Initial: 3; = 5°. Moment equations g =1,...,G. G=2:

al o : o 3 s [EVFOIBI] = (D
S B Ea BB = heloh o),
leg IGQ

In general: System of G linear equations by, = At

Solution: t = (72,...,73).

fDetails: Van de Wiel et al., Stat Med, 2016



Extension: Stability

e Some co-data render many groups: e.g. pathways
e G large: system byaa = At becomes unstable

e Need to stabilize solution

Solutions

1. Enforce monotony when grouping based on continuous
co-data (e.g. external p-values)

2. Shrink A to a stable target T: A; = gA+ (1 — q)T.

§Details: Novianti et al., Bioinformatics, 2017



Effect of shrinkage of A

Real data, random groups of variables
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Variable selection

Why can co-data help?

No Co-data /—_\ With Co-data

B True markers
B False markers
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Variable selection

Current solution:

1. Estimate group penalties from ridge regression, possibly
for multiple groupings

2. Select k variables by introducing non-grouped L,
penalty (i.e. thresholding)

3. Refit the model using the selected variables and their
respective L, penalties



Variable selection

Current solution:

1. Estimate group penalties from ridge regression, possibly
for multiple groupings

2. Select k variables by introducing non-grouped L,
penalty (i.e. thresholding)

3. Refit the model using the selected variables and their
respective L, penalties

“Bet on sparsity”: yes, but after penalty weighting



Software’

R-package GRridge, Github + Bioconductor:

e Logistic, linear and survival

e Auxiliary functions for co-data processing (from TCGA
etc.)

¢ Allows unpenalized covariates

e Built-in CV for comparison with ridge & lasso

YDetails: Novianti et al., Bioinformatics, 2017



Software’

R-package GRridge, Github + Bioconductor:
e Logistic, linear and survival

e Auxiliary functions for co-data processing (from TCGA
etc.)

¢ Allows unpenalized covariates

e Built-in CV for comparison with ridge & lasso

Comparison (one grouping only): Sparse group lasso, SGL
(Simon et al., J Comp Graph Stat, 2013).

YDetails: Novianti et al., Bioinformatics, 2017



Example: Diagnostics for cervical cancer

Goal: Select markers for classifying Normal vs CIN3
— final goal is a cheap PCR assay

Data:

microRNA sequencing data

n = 56: 32 Normal, 24 CIN3

p = 772 (after filtering lowly abundant ones).
Sqrt-transformed

Standardized



Co-data 1: Conservation status

1. Non-conserved, human only (552)
2. Conserved across mammals (72)
3. Broadly conserved, across most vertebrates (148)

mammats

groundhog

amphibians

-

® 2006 Encyclopadia Britannica, inc.




Co-data 2: Standard deviation

e Current practice: standardize variable j by sd: s;
— effective penalty \s? (Zwiener et al, 2014)
— too large advantage for small s;'s?
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Co-data 2: Standard deviation

e Current practice: standardize variable j by sd: s;
— effective penalty \s? (Zwiener et al, 2014)
— too large advantage for small s;'s?

e Our solution:

1. Standardize by s;
2. G groups of variables with decreasing s;

3. Effective penalty j € Gg: \j = 75 As?

¢ Allows a more non-parametric link between s; and ;
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For j € Gg, penalty factor: A}, o 7,2
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Co-data results

For j € Gg, penalty factor: A}, o 7,2

Conservation status:
1. Non-conserved (552): \]; = 1.84
2. Conserved across mammals (72): A\, = 0.61
3. Broadly conserved across vertebrates (148): A\; = 0.30

Standard deviation:
Range from \| = 0.56 (large s.d.) to \}; = 1.80 (small s.d.)

— Indeed, partly ‘undoes’ the effect of standardization (for
j€ Qg: )\j X )\iquZ)



Clinician:
“That’s all nice, but does the predictive accuracy improve?”

“Do I get the good biomarkers?”



Performance under variable selection
AUC assessed by LOOCV
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Stability of selection

50 re-sampled versions of data set. Overlap in selected
variables between pairs of re-samples
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Other applications, extensions

Hybrid Bayes - Empirical Bayes
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Other applications, extensions

Hybrid Bayes - Empirical Bayes
* A\g = A\gA. Ayt EB; Common A: Full Bayes (prior)

Networks (Gwenaél Leday, Gino Kpogbezan et al.l)
e Bayesian SEM: Variational Bayes + EB + prior network

Random Forest (Dennis te Beest**)
e Co-data moderated Random Forest

I Ann Appl Stat, 2016; Biom J, 2017
**arXiv, 2017



Take home

Empirical Bayes...

... is a versatile technique to learn

1. from a lot...(many variables)

2. ...and a lot more (co-data)
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Details

Method: Van de Wiel MA, Lien TG, Verlaat W, Van Wieringen WN,
Wilting SM (2016). Better prediction by use of co-data: Adaptive
group-regularized ridge regression. Stat Med., 35, 368-381.

Software: Novianti PW, Snoek B, Wilting SM, van de Wiel MA
(2017). Better diagnostic signatures from RNAseq data through
use of auxiliary co-data. Bioinformatics, 33, 1572-1574.

QUESTIONS?'f

TSlides available via: www.bigstatistics.nl
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