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Setting

• Prediction or Classification

• Primary data
I Variables i = 1, . . . ,p; Individuals j = 1, . . . ,n; p > n
I Focus on binary response Yj (e.g. case vs control)
I Measurements Xj = (X1j , . . . ,Xpj)
I Goal: find f such that Yj ≈ f (Xj)
I f : logistic regression, random forest, spike-and-slab, etc.
I Some form of regularization required

• Focus
I Differential regularization based on prior information:

Co-data



Co-data
Definition Co-data: any information on the variables not
using the response labels of the primary data
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Use of co-data

Groups: Co-data determine G prior groups of variables

Idea: Use different penalty weights λ1, . . . , λG across G
co-data-based groups. E.g. in ridge:

argmaxβL(Y;β)−
G∑

g=1

λg||βg||2

Challenge: Estimation of hyperparameters λg

CV not attractive
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Empirical Bayes (EB)

Definition∗: EB estimates the prior from data

→ Parametric form: estimate prior parameters
→ Penalized regression: estimate penalty parameters; via
link with prior

Why Empirical Bayes (EB)?
• EB estimators tend to improve for increasing p

• EB fits well with allowing for prior information: can
improve predictions

• Computationally nicer than Full Bayes and CV

∗Excellent discussions: Carlin & Louis (2000), Efron (2010), Van
Houwelingen (2014)
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Formal EB: Maximum marginal Likelihood

β = (β1, . . . , βp). Prior(s): πα(β), α = (α1, . . . , αK )

Marginal likelihood maximization:

α̂ = argmaxαML(α), with ML(α) =

∫
β

L(Y;β)πα(β)dβ,

High-dimensional integral→ optimization hard
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High-dimensional integral

Solutions:

• Laplace approximation (Shun & McCullagh, 1995)

• EM on Gibbs samples (Casella, 2001). Conceptually
easy, but computationally very intensive.

• EM on Variational Bayes approximation (Bernardo et al.,
2003). Fast, but dedicated approximations†.

• Or resort to alternative EB approach

†Work in progress for elastic net and spike-and-slab
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Back to the ridge example

Empirical Bayes (EB) estimation of λg explores

argmaxβL(Y;β)−
G∑

g=1

λg||βg||2 = βMAP,

when
j ∈ Group g : βj ∼ N(0, τ 2

g ), τ
−2
g ∝ λg

→ EB estimate of τ 2
g renders estimate of λg.
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EB for group-regularized ridge‡

Aim: τ̂ 2
g for group-regularized ridge: βi ∼ N(0, τ 2

g ), i ∈ Gg

Initial: β̂i = β̂λ0
i . Moment equations g = 1, . . . ,G. G = 2:

1
p1

∑
i∈G1

β̂2
i ≈

1
p1

∑
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Eβ

[
E [β̂2

i (Y)|β]
]
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2
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2
2 )

1
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∑
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i ≈

1
p2

∑
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[
E [β̂2

i (Y)|β]
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2
1 , τ

2
2 ),

In general: System of G linear equations bdata = At

Solution: t = (τ̂ 2
1 , . . . , τ̂

2
g ).

‡Details: Van de Wiel et al., Stat Med, 2016
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Extension: Stability §

• Some co-data render many groups: e.g. pathways

• G large: system bdata = At becomes unstable

• Need to stabilize solution

Solutions

1. Enforce monotony when grouping based on continuous
co-data (e.g. external p-values)

2. Shrink A to a stable target T : Ãq = qA + (1− q)T .

§Details: Novianti et al., Bioinformatics, 2017



Effect of shrinkage of A
Real data, random groups of variables

Left: No Shrinkage; Right: Shrinkage



Variable selection

Why can co-data help?



Variable selection

Current solution:
1. Estimate group penalties from ridge regression, possibly

for multiple groupings

2. Select k variables by introducing non-grouped L1

penalty (i.e. thresholding)

3. Refit the model using the selected variables and their
respective L2 penalties

“Bet on sparsity”: yes, but after penalty weighting
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Software¶

R-package GRridge, Github + Bioconductor:

• Logistic, linear and survival

• Auxiliary functions for co-data processing (from TCGA
etc.)

• Allows unpenalized covariates

• Built-in CV for comparison with ridge & lasso

Comparison (one grouping only): Sparse group lasso, SGL
(Simon et al., J Comp Graph Stat, 2013).

¶Details: Novianti et al., Bioinformatics, 2017
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Example: Diagnostics for cervical cancer

Goal: Select markers for classifying Normal vs CIN3
→ final goal is a cheap PCR assay

Data:
• microRNA sequencing data
• n = 56: 32 Normal, 24 CIN3
• p = 772 (after filtering lowly abundant ones).
• Sqrt-transformed
• Standardized



Co-data 1: Conservation status

1. Non-conserved, human only (552)
2. Conserved across mammals (72)
3. Broadly conserved, across most vertebrates (148)



Co-data 2: Standard deviation

• Current practice: standardize variable j by sd: sj

→ effective penalty λs2
j (Zwiener et al, 2014)

→ too large advantage for small sj ’s?

• Our solution:

1. Standardize by sj
2. G groups of variables with decreasing sj

3. Effective penalty j ∈ Gg : λj = τ̂−2
g λs2

j

• Allows a more non-parametric link between sj and λj
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Co-data results

For j ∈ Gg, penalty factor: λ′g ∝ τ−2
g

Conservation status:
1. Non-conserved (552): λ′1 = 1.84
2. Conserved across mammals (72): λ′2 = 0.61
3. Broadly conserved across vertebrates (148): λ′3 = 0.30

Standard deviation:
Range from λ′1 = 0.56 (large s.d.) to λ′10 = 1.80 (small s.d.)

→ Indeed, partly ‘undoes’ the effect of standardization (for
j ∈ Gg: λj ∝ λ′gs2

j ).
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Clinician:

“That’s all nice, but does the predictive accuracy improve?”

“Do I get the good biomarkers?”



Performance under variable selection
AUC assessed by LOOCV

GRridge + EN, Sparse group-lasso, Lasso, Elastic Net



Stability of selection
50 re-sampled versions of data set. Overlap in selected
variables between pairs of re-samples
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Other applications, extensions

Hybrid Bayes - Empirical Bayes
• λg = λ′gλ. λ′g: EB; Common λ: Full Bayes (prior)

Networks (Gwenaël Leday, Gino Kpogbezan et al.‖)
• Bayesian SEM: Variational Bayes + EB + prior network

Random Forest (Dennis te Beest∗∗)
• Co-data moderated Random Forest

‖Ann Appl Stat, 2016; Biom J, 2017
∗∗arXiv, 2017
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Take home

Empirical Bayes...

... is a versatile technique to learn

1. from a lot...(many variables)

2. ...and a lot more (co-data)
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Details
Method: Van de Wiel MA, Lien TG, Verlaat W, Van Wieringen WN,
Wilting SM (2016). Better prediction by use of co-data: Adaptive
group-regularized ridge regression. Stat Med., 35, 368-381.

Software: Novianti PW, Snoek B, Wilting SM, van de Wiel MA
(2017). Better diagnostic signatures from RNAseq data through
use of auxiliary co-data. Bioinformatics, 33, 1572-1574.

QUESTIONS?††

††Slides available via: www.bigstatistics.nl
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