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Part I: Adaptive elastic net, clinical prognostic setting

Research goals:
Predict clinical outcomes, like therapy
response or tumour relapse
Select variables for a parsimonious predictor

Elastic net simultaneously selects and
estimates effect of variables

Co-data: known grouping(s) of variables

Groups of variables may differ in predictive
strength and dimension

Group-adaptive elastic net learns from co-data
to improve prediction and variable selection
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Previous work on group-adaptive elastic net

Each group of variables obtains a group-specific elastic net penalty

Groups that are relatively more important should obtain a smaller penalty

Finding optimal penalties is hard:

fwelnet (Tay et al. 2020): boils down to (non-adaptive) group elastic net for grouped variables

→
may not be flexible enough compared to group-adaptive methods

ipflasso (Boulesteix et al. 2017): use cross-validation on predefined set of possible penalties

→
computationally expensive

gren (Münch et al. 2019): empirical-variational Bayes approximation

→ computationally expensive

The presented method squeezy: group-adaptive, fast and for generic response
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Model

Generalised linear model (GLM) for response Y :

y ∼ π(Y |X,β), E(Y ) = g−1(Xβ),

with g(·) the link function. Plus: scaling parameter.

Group-adaptive elastic net prior for the regression coefficients β:

π(βk|α, λgk ) ∝ exp

(
−λgk

(
α|βk|+ (1− α)1

2
β2
k

))
with hyperparameters:

α: fixed mixing parameter between ridge (α = 0; normal) and lasso (α = 1)
λgk : group-specific penalty for variable k belonging to group gk ∈ {1, .., G}
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Estimation of model parameters

Estimate penalty parameters by empirical Bayes

Marginal likelihood, equivalent to an exhaustive cross-validation (Fong and Holmes 2019)
Maximum marginal likelihood estimates for the group-specific penalties:

λ̂ = argmax
λ

π(y|X,α,λ) = argmax
λ

∫
β
π(y|X,β)π(β|α,λ)dβ

Relatively hard: use approximation

Once λ known: estimate β using standard implementation (e.g. glmnet for fast point estimate)
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Optimising the marginal likelihood

Optimise in three steps:

1 Consider group-adaptive ridge (normal prior): obtain fast ridge penalty estimates

2 For group-adaptive elastic net: show that the prior distribution for the linear predictors is
approximately (multivariate) normal

3 Transform ridge penalties to elastic net penalties

The adaptive, multi-penalty elastic net 7 / 20
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Step 1: fast ridge estimates

Low-dimensional representation of marginal likelihood in terms of linear predictor η = Xβ ∈ Rn
(Veerman, Leday, and Wiel 2019):

π(y|X,α,λ) =
∫
β

π(y|X,β)π(β|α,λ)dβ =

∫
η

π(y|η)π(η|α,λ)dη

For ridge models (α = 0) with group-specific ridge penalties λR, the prior distribution of the
linear predictors is known:

η := Xβ ∼ N

(
0,

G∑
g=1

λ−1
R,gXgX

T
g

)

with Xg the observed data for variable group g, XgX
T
g ∈ Rn×n

Approximate the low-dimensional integral with a Laplace approximation and optimise to obtain λ̂R
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Step 2: act normal

Problem: for α 6= 0 we do not know π(η|λ, α)
Solution: approximate by a multivariate normal:

π(η|α,λ) ≈ N

(
0,

G∑
g=1

vgXgX
T
g

)

with prior variances vg = VarEN
βk|α,λgk

[βk].

v̂g = λ̂−1
R,g

The adaptive, multi-penalty elastic net 9 / 20
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Why would this approximation work?

The linear predictor for each sample i is a weighted average:

ηi = Xi,:β =

p∑
k=1

Xi,kβk

Multivariate CLT (Eicker 1966): η is asymptotically multivariate normal

Assumptions on β: each βk has finite group-specific prior mean and variance
Assumptions on X: X ∈ Rn×p should be ‘dense’ in p

0 0 · · · 0 1.22
0 0 · · · 0 −1.60
0 0 · · · 0 −0.61

  0.44 0.36 · · · 1.65 1.22
0.18 1.00 · · · −0.90 −1.60
−1.00 0.18 · · · 0.22 −0.61

  0.44 0.36 · · · 1.65 12200
0.18 1.00 · · · −0.90 16000
−1.00 0.18 · · · 0.22 −61000


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Step 3: transform ridge to elastic net penalties

h(λg) := VarEN
βk|α,λg

[βk]
set
= v̂g = λ̂−1

R,g. Root finding: λ̂ = h−1
(
λ̂−1
R

)
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Figure: Transformation ridge penalty to elastic net penalty for different α
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Application to classifying treatment response

Main data (n = 88, p = 2114): miRNA expression

Co-data: 8 variable groups, reflecting difference tumor vs normal tissue (other samples)

Predict therapy response in colon cancer: clinical benefit vs disease progression

Assess computing time and performance in 10-fold cross-validation of the following methods:

Method Group-adaptive Generic in response
elastic net (baseline) x v
fwEN (groups) x v
fwEN (continuous) x v
ipflasso v/x v
gren v x
squeezy v v

The adaptive, multi-penalty elastic net 12 / 20
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Results

Group-penalties:
Mixing parameter

penalty α = 0 α = 0.5 α = 1

λ̂EN
1 100 24 14

λ̂EN
2 , . . . , λ̂EN

8 ≈ 108 ≈ 14 ∗ 103 ≈ 14 ∗ 103

Predictive performance:

squeezy

fwEN (groups)

fwEN (continuous)

ipflasso

gren

elastic net

0.4

0.5

0.6

0.7

0.00 0.25 0.50 0.75 1.00
Alpha

A
U

C

Method
a
a
a
a
a
a

elastic net
fwEN (groups)
fwEN (continuous)
ipflasso
gren
squeezy

Computing time (10 folds):
Method Time (s)
elastic net 10.17
fwEN (groups) 120.20
squeezy 130.58
fwEN (continuous) 140.11
gren 3510.52
ipflasso 4220.39

Conclusion:

Adaptive learning from co-data improves
performance

Squeezy performs as well as gren, but 25
times faster
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times faster
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Better variable selection

Simulation setting
(a): Strongly informative co-data; (b) Weakly informative; (c) Non-informative; (d) No co-data
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Extensions

Approximation works for other priors: spike-and-slab, bridge, but not horseshoe

MVN can be visually checked a posteriori (Q-Q plot)

Continuous co-data; overlapping groups
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Part II: Average treatment effect (ATE) estimation using adaptive EN

Non-randomized setting

Potential outcomes framework. ATE: θ = E[Y d=1]− E[Y d=0]

Standard doubly robust estimator

Estimator for ATE in HD settings

Link to Part I
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Why does a simple approach fail in HD settings?

Standard doubly robust estimator:

Ê[Y d=1] =
1

n

n∑
i=1

{
YiDi

p̂s(Xi)
− Ŷ (1, Xi)(Di − p̂s(Xi))

p̂s(Xi)

}

=
1

n

n∑
i=1

{
Ŷ (1, Xi) +

Di(Yi − Ŷ (1, X))

p̂s(Xi)

}

Di = 0, 1 (treatment), Yi : response, Ŷ (1, Xi): response prognosis, p̂s(Xi): propensity score (may
depend on clinical confounders as well)

Likewise, Ê[Y d=0]. ATE: θ̂ = Ê[Y d=1]− Ê[Y d=0]

Works when either Ŷ (t,Xi), t = 0, 1 or p̂s(Xi) is unbiased.

In high-dimensional settings both are inevitably biased.
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Solution: sample splitting

Chernozhukov et al. 2018 show that sample splitting provides a solution:

Ẽ[Y d=1] =
1

n

n∑
i=1

{
Ỹ (−i)(1, Xi) +

Di(Yi − Ỹ (−i)(1, Xi))

p̃s(−i)(Xi)

}
,

where Ỹ (−i)(d,Xi), p̃s(−i)(Xi) refer to (mean) predictions on models learnt without sample i.

Can be extended to local ATE (= function of Xi) → relevant for treatment optimization.
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Links to Part I

Trivial link: three prediction problems, Y (0, X), Y (1, X), ps(X).
Adaptive EN is a candidate learner for these
Sample splitting ⇒ computational efficiency for penalty estimation crucial

Coupling predictions Y (0, X) and Y (1, X). Attractive to limit or shrink the number of parameters
to estimate.
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Coupling predictions Y (0, X) and Y (1, X)

1 Homogenous effect of variables.
Y (Di, Xi) = β0 +Diγ0 +Xiβ
Often too simple, not realistic.

2 Interaction effect
Interaction effect. Y (Di, Xi) = β0 +Diγ0 +Xiβ +DiXiγ
β : EN(α, λβ) prior; γ : EN(α, λγ) prior
Shrinks differential effects (γ) to 0. Squeezy applies to estimate λβ and λγ

3 Control group as prior
Y (Di = 0, Xi) = β0 +Xiβ; and Y (Di = 1, Xi) = γ0 +Xiγ

γk : EN(α, λgk(β̂k)
) prior. E.g. gk(0) = 1; gk(β̂k) = 2, for β̂k 6= 0

Attractive when control group is large, (experimental) treatment group is small
Squeezy applies to estimate λ’s; extends efficiently to inclusion of variable groups.

The adaptive, multi-penalty elastic net 20 / 20



Introduction Model Estimation Results Part II: ATE estimation References

Coupling predictions Y (0, X) and Y (1, X)

1 Homogenous effect of variables.
Y (Di, Xi) = β0 +Diγ0 +Xiβ
Often too simple, not realistic.

2 Interaction effect
Interaction effect. Y (Di, Xi) = β0 +Diγ0 +Xiβ +DiXiγ
β : EN(α, λβ) prior; γ : EN(α, λγ) prior
Shrinks differential effects (γ) to 0. Squeezy applies to estimate λβ and λγ

3 Control group as prior
Y (Di = 0, Xi) = β0 +Xiβ; and Y (Di = 1, Xi) = γ0 +Xiγ

γk : EN(α, λgk(β̂k)
) prior. E.g. gk(0) = 1; gk(β̂k) = 2, for β̂k 6= 0

Attractive when control group is large, (experimental) treatment group is small
Squeezy applies to estimate λ’s; extends efficiently to inclusion of variable groups.

The adaptive, multi-penalty elastic net 20 / 20



Introduction Model Estimation Results Part II: ATE estimation References

Coupling predictions Y (0, X) and Y (1, X)

1 Homogenous effect of variables.
Y (Di, Xi) = β0 +Diγ0 +Xiβ
Often too simple, not realistic.

2 Interaction effect
Interaction effect. Y (Di, Xi) = β0 +Diγ0 +Xiβ +DiXiγ
β : EN(α, λβ) prior; γ : EN(α, λγ) prior
Shrinks differential effects (γ) to 0. Squeezy applies to estimate λβ and λγ

3 Control group as prior
Y (Di = 0, Xi) = β0 +Xiβ; and Y (Di = 1, Xi) = γ0 +Xiγ

γk : EN(α, λgk(β̂k)
) prior. E.g. gk(0) = 1; gk(β̂k) = 2, for β̂k 6= 0

Attractive when control group is large, (experimental) treatment group is small
Squeezy applies to estimate λ’s; extends efficiently to inclusion of variable groups.

The adaptive, multi-penalty elastic net 20 / 20



Thank you!

More information on
the adaptive EN in
(van Nee, van de
Brug, and van de
Wiel 2021)

R-package squeezy

available on CRAN
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Appendix: multivariate central limit theorem

Multivariate central limit theorem for linear random vector forms (Eicker 1966)

Suppose βj
ind.∼ πgj (βj) for j = 1, . . . , p and group-specific prior πgj (·), with E(βj) = 0 and

Var(βj) = τ2gj ∈ (0,∞). For g = 1, . . . , G, let Gg be the group size and let Xg ∈ Rn×Gg be the

weights corresponding to group g. Let X∗j denote the jth column of X ∈ Rn×p. Suppose
X∗j 6= 0 ∈ Rn for all j, rank(X) = n for all p, and for p→∞,

max
j=1,...,p

XT
∗j
(
XXT )−1

X∗j → 0. (1)

Then, for fixed G, fixed n, and p→∞,(∑
g τ

2
gXgX

T
g

)−1/2

Xβ
d→ N(0, In×n), (2)

where In×n is the (n× n)-dimensional identity matrix and
(∑

g τ
2
gXgX

T
g

)−1/2
is the inverse of the

unique positive definite square root of
∑
g τ

2
gXgX

T
g .

If n = 1 then condition (1) is equivalent to maxj=1,...,p x
2
1j

/∑p
j=1 x

2
1j → 0, for p→∞. Informally,

condition (1) can be interpreted as each variable being asymptotically negligible in size compared to
the full data set.
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