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Part |: Adaptive elastic net, clinical prognostic setting

@ Research goals:

o Predict clinical outcomes, like therapy
response or tumour relapse
o Select variables for a parsimonious predictor

o Elastic net simultaneously selects and
estimates effect of variables
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Part |: Adaptive elastic net, clinical prognostic setting

pg = 50 specific mutations

@ Research goals:
o Predict clinical outcomes, like therapy
response or tumour relapse
o Select variables for a parsimonious predictor Py = 20,000 genes
o Elastic net simultaneously selects and
estimates effect of variables

o Co-data: known grouping(s) of variables

@ Groups of variables may differ in predictive Methylomics py = 800,000 locations

strength and dimension

o Group-adaptive elastic net learns from co-data
to improve prediction and variable selection

pp = 2,000 targeted proteins
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Previous work on group-adaptive elastic net

o Each group of variables obtains a group-specific elastic net penalty
@ Groups that are relatively more important should obtain a smaller penalty

e Finding optimal penalties is hard:

o fwelnet (Tay et al. 2020): boils down to (non-adaptive) group elastic net for grouped variables —
may not be flexible enough compared to group-adaptive methods

o ipflasso (Boulesteix et al. 2017): use cross-validation on predefined set of possible penalties —
computationally expensive

o gren (Miinch et al. 2019): empirical-variational Bayes approximation — computationally expensive

@ The presented method squeezy: group-adaptive, fast and for generic response
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@ Generalised linear model (GLM) for response Y':
y~m(Y|X,8), B(Y) =g '(XB),

with g(-) the link function. Plus: scaling parameter.
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Model

o Generalised linear model (GLM) for response Y':
y~7(Y|X,8), E(Y)

with g(-) the link function. Plus: scaling parameter.

Part II: ATE estimation
00000

9 ' (XB),

o Group-adaptive elastic net prior for the regression coefficients (3:

(Bulaxg) ox xp (o (alfil + (1 - )36t ) )

with hyperparameters:

e a: fixed mixing parameter between ridge (o = 0; normal) and lasso (a = 1)
o Mg, group-specific penalty for variable k belonging to group g; € {1,..,G}

The adaptive, multi-penalty elastic net

References

5 /20



o Estimate penalty parameters by empirical Bayes



o Estimate penalty parameters by empirical Bayes
e Marginal likelihood, equivalent to an exhaustive cross-validation (Fong and Holmes 2019)



Introduction Model Estimation Results Part II: ATE estimation References
[e]e]e} [e] 000000 [e]e]e} 00000

Estimation of model parameters

@ Estimate penalty parameters by empirical Bayes

e Marginal likelihood, equivalent to an exhaustive cross-validation (Fong and Holmes 2019)
o Maximum marginal likelihood estimates for the group-specific penalties:

X = argmax 7(y|X, a, A) = argmax / w(y| X, B)w(B|a, A)dB
A A B

o Relatively hard: use approximation
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Estimation of model parameters

@ Estimate penalty parameters by empirical Bayes

e Marginal likelihood, equivalent to an exhaustive cross-validation (Fong and Holmes 2019)
o Maximum marginal likelihood estimates for the group-specific penalties:

X = argmax 7(y|X, a, A) = argmax / w(y| X, B)w(B|a, A)dB
A A B

o Relatively hard: use approximation

@ Once X known: estimate 3 using standard implementation (e.g. glmnet for fast point estimate)
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Optimising the marginal likelihood

Optimise in three steps:

@ Consider group-adaptive ridge (normal prior): obtain fast ridge penalty estimates
@ For group-adaptive elastic net: show that the prior distribution for the linear predictors is
approximately (multivariate) normal

© Transform ridge penalties to elastic net penalties
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Step 1: fast ridge estimates

o Low-dimensional representation of marginal likelihood in terms of linear predictor n = X3 € R"

(Veerman, Leday, and Wiel 2019):

(Y[ X, a, A) =/ﬁﬂ(le,B)ﬂ(ﬁ\aA)dﬁ=/ﬂ(yln)ﬁ(nla,A)dn

n
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Step 1: fast ridge estimates

o Low-dimensional representation of marginal likelihood in terms of linear predictor n = X3 € R"
(Veerman, Leday, and Wiel 2019):

(Yl X, 0, A) = /ﬂ (Y| X, B)r(Blon \)dB = / (y|m)m(mlo, X)dn

n

@ For ridge models (o = 0) with group-specific ridge penalties Ar, the prior distribution of the
linear predictors is known:

G
n:=XB~N (0, > AR}ngXgT>

g=1

with X, the observed data for variable group g, X, X € R™*"
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Step 1: fast ridge estimates

o Low-dimensional representation of marginal likelihood in terms of linear predictor n = X3 € R"
(Veerman, Leday, and Wiel 2019):

r(ylX, a,A) = /ﬂ (Y| X, B)r(Blon \)dB = / (y|m)m(mlo, X)dn

@ For ridge models (o = 0) with group-specific ridge penalties Ar, the prior distribution of the
linear predictors is known:

G
n:=XB~N (0, > AR}ngXgT>

g=1
with X, the observed data for variable group g, X, X € R™*"

o Approximate the low-dimensional integral with a Laplace approximation and optimise to obtain Ar

The adaptive, multi-penalty elastic net 8 /20



@ Problem: for o # 0 we do not know 7 (n|A, @)

@ Solution: approximate by a multivariate normal:

m(nla, A) (0 Z Vg XgX )

with prior variances vy = Varg"\c”a,)‘gk [Bk].

PO |
° Uy = )\R7g



@ The linear predictor for each sample i is a weighted average:

P
ni = Xi,: 0= ZXi,kﬂk

k=1
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Why would this approximation work?

@ The linear predictor for each sample i is a weighted average:

P
mi=Xi.B=" XikB

k=1

e Multivariate CLT (Eicker 1966): 7 is asymptotically multivariate normal
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Why would this approximation work?

@ The linear predictor for each sample i is a weighted average:
P
n = Xi. 0= ZXi,kﬁk
k=1

e Multivariate CLT (Eicker 1966): 7 is asymptotically multivariate normal

e Assumptions on (3: each [ has finite group-specific prior mean and variance
e Assumptions on X: X € R™*P should be ‘dense’ in p
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Why would this approximation work?

@ The linear predictor for each sample i is a weighted average:

P
N =X;.0= ZXi,kﬁk
k=1
e Multivariate CLT (Eicker 1966): 7 is asymptotically multivariate normal

e Assumptions on (3: each [ has finite group-specific prior mean and variance
e Assumptions on X: X € R™*P should be ‘dense’ in p
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h(Ag) = Var§', . [85] 2 8, = AzL. Root finding: A =7~ (5\,;1)
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Step 3: transform ridge to elastic net penalties

Results Part II: ATE estimation
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h(Xg) = Var , , [Bs] £ 95 = AL Root finding: A= h~" (A;})

Elastic net penalty
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Figure: Transformation ridge penalty to elastic net penalty for different o
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Application to classifying treatment response

e Main data (n = 88,p = 2114): miRNA expression
o Co-data: 8 variable groups, reflecting difference tumor vs normal tissue (other samples)

@ Predict therapy response in colon cancer: clinical benefit vs disease progression
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Application to classifying treatment response

Main data (n = 88,p = 2114): miRNA expression
Co-data: 8 variable groups, reflecting difference tumor vs normal tissue (other samples)

@ Predict therapy response in colon cancer: clinical benefit vs disease progression

@ Assess computing time and performance in 10-fold cross-validation of the following methods:

Method Group-adaptive  Generic in response
elastic net (baseline)  x v
fwEN (groups) X v
fwEN (continuous) X v
ipflasso v/x v
gren v X
squeezy v v

The adaptive, multi-penalty elastic net 12 /20
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Mixing parameter
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Results
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Computing time (10 folds):

Mixing parameter Method Time (s)
E)enalty a=0 a=05 a=1 elastic net 10.17
AEN 100 24 14 fwEN (groups) 120.20
AN UMM | 2108 ~14%10° ~14%10° squeezy 130.58
fwEN (continuous)  140.11
Predictive performance: gren 3510.52
ipflasso 4220.39
0.7- =
grert
WEN (continuous) . Method
0.6-fwENNgroups) T & elastic net
(@) Selasticheg =« fwEN (groups)
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Better variable selection

Simulation setting
(a): Strongly informative co-data; (b) Weakly informative; (c) Non-informative; (d) No co-data
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o Approximation works for other priors: spike-and-slab, bridge, but not horseshoe
@ MVN can be visually checked a posteriori (Q-Q plot)

o Continuous co-data; overlapping groups
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Part II: Average treatment effect (ATE) estimation using adaptive EN

@ Non-randomized setting
o Potential outcomes framework. ATE: § = E[Y*='] — E[Y 9]

@ Standard doubly robust estimator

Estimator for ATE in HD settings

Link to Part |

The adaptive, multi-penalty elastic net 16 / 20
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Why does a simple approach fail in HD settings?

@ Standard doubly robust estimator:

BV =02\ m ps(X.)
T D;(Yi — Y (1,X))
E; Y (1, X3) + 50X }

D; = 0,1 (treatment), Y; : response, Y(l,Xi): response prognosis, ps(X;): propensity score (may

depend on clinical confounders as well)

o Likewise, E[Y?=°]. ATE: § = E[Y?=1] — E[Y9=0]

The adaptive, multi-penalty elastic net 17 /20
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Why does a simple approach fail in HD settings?

@ Standard doubly robust estimator:

By = Ly { YD ¥(1, X)(D: — E(X0)) }

| ps(XG) Ps(Xi)
T D;(Yi — Y (1,X))
== Zl Y(1,X:) + 505 }

D; = 0,1 (treatment), Y; : response, Y(LXZ'): response prognosis, ps(X;): propensity score (may
depend on clinical confounders as well)

o Likewise, E[Y?=°]. ATE: § = E[Y?=1] — E[Y9=0]

o Works when either Y (¢, X;),t = 0,1 or p5(X;) is unbiased.

@ In high-dimensional settings both are inevitably biased.

The adaptive, multi-penalty elastic net 17 /20
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Solution: sample splitting

Chernozhukov et al. 2018 show that sample splitting provides a solution:

n

~ . (Y, — V(D )
EY*©l = %Z {Y(_Z)(l,Xi) + DZ(KF;;Z)(XS’XZ)) } :

=1

where Y (=9 (d, X;), ps{ " (X,) refer to (mean) predictions on models learnt without sample i.

Can be extended to local ATE (= function of X;) — relevant for treatment optimization.

The adaptive, multi-penalty elastic net 18 /20



@ Trivial link: three prediction problems, Y (0, X),Y (1, X), ps(X).
o Adaptive EN is a candidate learner for these
e Sample splitting = computational efficiency for penalty estimation crucial
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Links to Part |

@ Trivial link: three prediction problems, Y (0, X),Y (1, X), ps(X).
o Adaptive EN is a candidate learner for these
e Sample splitting = computational efficiency for penalty estimation crucial

@ Coupling predictions Y (0, X) and Y (1, X). Attractive to limit or shrink the number of parameters
to estimate.

The adaptive, multi-penalty elastic net 19 /20



@ Homogenous effect of variables.

o Y(D;, X;) = Bo + Divo + Xif3
o Often too simple, not realistic.



Introduction Model Estimation Results Part II: ATE estimation
[e]e]e} [e] 000000 [e]e]e} 0000e

Coupling predictions Y (0, X) and Y (1, X)

© Homogenous effect of variables.

o Y(Dy, X;) = Bo + Divo + Xi8
e Often too simple, not realistic.

@ Interaction effect
o Interaction effect. Y (D;, X;) = Bo + Divo + X:8+ D; Xy
o B :EN(a, Ag) prior; v : EN(a, A~) prior
o Shrinks differential effects (v) to 0. Squeezy applies to estimate Ag and A\
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Coupling predictions Y (0, X) and Y (1, X)

© Homogenous effect of variables.

o Y(Dy, X;) = Bo + Divo + Xi8
e Often too simple, not realistic.

@ Interaction effect

o Interaction effect. Y (D;, X;) = Bo + Divo + X:8+ D; Xy

o B :EN(a, Ag) prior; v : EN(a, A~) prior

Part II: ATE estimation
[ele]ele] J

o Shrinks differential effects (v) to 0. Squeezy applies to estimate Ag and A\

© Control group as prior

o Y(D; =0,X;)=Po+ X;8; and Y(D; = 1,){2') =7 + Xiy
o Vi : EN(a’AQMBk)) prior. E.g. g1(0) = 1; g (Bx) = 2, for B, #0
Attractive when control group is large, (experimental) treatment group is small

o Squeezy applies to estimate \'s; extends efficiently to inclusion of variable groups.
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@ More information on
the adaptive EN in
(van Nee, van de
Brug, and van de
Wiel 2021)

@ R-package squeezy
available on CRAN

Thank you!
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Appendix: multivariate central limit theorem

Multivariate central limit theorem for linear random vector forms (Eicker 1966)

Suppose f3; G mg; (B5) for j =1,...,p and group-specific prior 7y, (-), with E(8;) = 0 and
Var(8;) = 7'92]. € (0,00). Forg=1,...,G, let G4 be the group size and let X, € R™*%s be the
weights corresponding to group g. Let X.; denote the 5% column of X € R"*P. Suppose
X.j #0 € R" for all j, rank(X) = n for all p, and for p — oo,

max x5 (xXT) 7 Xy — 0. (1)
Then, for fixed G, fixed n, and p — oo,

—1/2
(S, 72%,XT) " XB 5 N(O, Lnxn), )

where I, xn is the (n x n)-dimensional identity matrix and (Zg 7'572X9X;'F)71/2 is the inverse of the
unique positive definite square root of Zg ngXngT.

condition (1) can be interpreted as each variable being asymptotically negligible in size compared to
the full data set.
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