Improving prediction, variable selection and treatment effect estimation by the adaptive, multi-penalty elastic net

Mark van de Wiel, Joint work with Mirrelijn van Nee

Epidemiology & Data Science, Amsterdam University Medical Centers, Netherlands

Armitage Workshop, Cambridge, 2021

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
●00	0	000000	000	00000	
Content					

- Part I: Adaptive elastic net, prognostic setting
 - Response: $\boldsymbol{y} \approx g^{-1}(X\boldsymbol{\beta})$
 - Variables (features): $X = X_{n \times p}, p > n$; High-dimensional (HD) setting
 - g: link function
 - β : estimated by adaptive elastic net
 - Penalty parameters adapt to prior information
 - Main challenge: estimate penalty parameters (equiv: prior parameters)

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
●00	0	000000	000	00000	
Content					

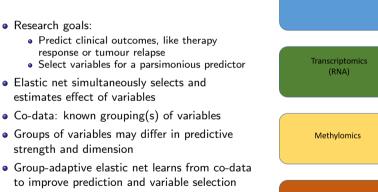
- Part I: Adaptive elastic net, prognostic setting
 - Response: $\boldsymbol{y} \approx g^{-1}(X\boldsymbol{\beta})$
 - Variables (features): $X = X_{n \times p}, p > n$; High-dimensional (HD) setting
 - g: link function
 - β : estimated by adaptive elastic net
 - Penalty parameters adapt to prior information
 - Main challenge: estimate penalty parameters (equiv: prior parameters)
- Part II: Average treatment effect (ATE) estimation using adaptive EN
 - Estimator for ATE in HD settings
 - Link to Part I

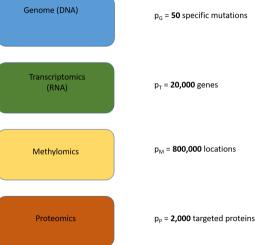
Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Part I: Adapt	ive elastic net,	clinical prognostic	c setting		

• Research goals:

- Predict clinical outcomes, like therapy response or tumour relapse
- Select variables for a parsimonious predictor
- Elastic net simultaneously selects and estimates effect of variables

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Part I: Ada	ptive elastic net,	clinical prognost	ic setting		





Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Previous work	on group-ada	ptive elastic net			

- Each group of variables obtains a group-specific elastic net penalty
- Groups that are relatively more important should obtain a smaller penalty

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Previous work	on group-ada	ptive elastic net			

- Each group of variables obtains a group-specific elastic net penalty
- Groups that are relatively more important should obtain a smaller penalty
- Finding optimal penalties is hard:

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Previous work o	n group-adaptiv	e elastic net			

- Each group of variables obtains a group-specific elastic net penalty
- Groups that are relatively more important should obtain a smaller penalty
- Finding optimal penalties is hard:
 - fwelnet (Tay et al. 2020): boils down to (non-adaptive) group elastic net for grouped variables

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Previous work	on group-ada	ptive elastic net			

- Each group of variables obtains a group-specific elastic net penalty
- Groups that are relatively more important should obtain a smaller penalty
- Finding optimal penalties is hard:
 - fwelnet (Tay et al. 2020): boils down to (non-adaptive) group elastic net for grouped variables \rightarrow may not be flexible enough compared to group-adaptive methods

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Previous work	on group-ada	ptive elastic net			

- Each group of variables obtains a group-specific elastic net penalty
- Groups that are relatively more important should obtain a smaller penalty
- Finding optimal penalties is hard:
 - fwelnet (Tay et al. 2020): boils down to (non-adaptive) group elastic net for grouped variables \rightarrow may not be flexible enough compared to group-adaptive methods
 - ipflasso (Boulesteix et al. 2017): use cross-validation on predefined set of possible penalties

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Previous work	on group-ada	ptive elastic net			

- Each group of variables obtains a group-specific elastic net penalty
- Groups that are relatively more important should obtain a smaller penalty
- Finding optimal penalties is hard:
 - fwelnet (Tay et al. 2020): boils down to (non-adaptive) group elastic net for grouped variables \rightarrow may not be flexible enough compared to group-adaptive methods
 - ipflasso (Boulesteix et al. 2017): use cross-validation on predefined set of possible penalties → computationally expensive

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Previous work	on group-ada	ptive elastic net			

- Each group of variables obtains a group-specific elastic net penalty
- Groups that are relatively more important should obtain a smaller penalty
- Finding optimal penalties is hard:
 - fwelnet (Tay et al. 2020): boils down to (non-adaptive) group elastic net for grouped variables \rightarrow may not be flexible enough compared to group-adaptive methods
 - ipflasso (Boulesteix et al. 2017): use cross-validation on predefined set of possible penalties \rightarrow computationally expensive
 - gren (Münch et al. 2019): empirical-variational Bayes approximation

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Previous work	on group-ada	ptive elastic net			

- Each group of variables obtains a group-specific elastic net penalty
- Groups that are relatively more important should obtain a smaller penalty
- Finding optimal penalties is hard:
 - fwelnet (Tay et al. 2020): boils down to (non-adaptive) group elastic net for grouped variables \rightarrow may not be flexible enough compared to group-adaptive methods
 - ipflasso (Boulesteix et al. 2017): use cross-validation on predefined set of possible penalties \rightarrow computationally expensive
 - gren (Münch et al. 2019): empirical-variational Bayes approximation \rightarrow computationally expensive

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Previous work	on group-ada	ptive elastic net			

- Each group of variables obtains a group-specific elastic net penalty
- Groups that are relatively more important should obtain a smaller penalty
- Finding optimal penalties is hard:
 - fwelnet (Tay et al. 2020): boils down to (non-adaptive) group elastic net for grouped variables \rightarrow may not be flexible enough compared to group-adaptive methods
 - ipflasso (Boulesteix et al. 2017): use cross-validation on predefined set of possible penalties \rightarrow computationally expensive
 - gren (Münch et al. 2019): empirical-variational Bayes approximation \rightarrow computationally expensive
- The presented method squeezy: group-adaptive, fast and for generic response

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	•	000000	000	00000	/
Model					

• Generalised linear model (GLM) for response **Y**:

$$\boldsymbol{y} \sim \pi(\boldsymbol{Y}|\boldsymbol{X},\boldsymbol{\beta}), \ E(\boldsymbol{Y}) = g^{-1}(\boldsymbol{X}\boldsymbol{\beta}),$$

with $g(\cdot)$ the link function. Plus: scaling parameter.

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	•	000000	000	00000	
Model					

• Generalised linear model (GLM) for response Y:

$$\boldsymbol{y} \sim \pi(\boldsymbol{Y}|\boldsymbol{X},\boldsymbol{\beta}), \ E(\boldsymbol{Y}) = g^{-1}(\boldsymbol{X}\boldsymbol{\beta}),$$

with $g(\cdot)$ the link function. Plus: scaling parameter.

• Group-adaptive elastic net prior for the regression coefficients β :

$$\pi(\beta_k|\alpha,\lambda_{g_k}) \propto \exp\left(-\lambda_{g_k}\left(\alpha|\beta_k| + (1-\alpha)\frac{1}{2}\beta_k^2\right)\right)$$

with hyperparameters:

- α : fixed mixing parameter between ridge ($\alpha = 0$; normal) and lasso ($\alpha = 1$)
- λ_{g_k} : group-specific penalty for variable k belonging to group $g_k \in \{1,..,G\}$

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	00000	000	00000	
Estimation of mo	odel parameters	;			

• Estimate penalty parameters by empirical Bayes

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	00000	000	00000	
Estimation of mo	odel parameters	i de la companya de l			

- Estimate penalty parameters by empirical Bayes
 - Marginal likelihood, equivalent to an exhaustive cross-validation (Fong and Holmes 2019)

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	●00000	000	00000	
Estimation of m	odel parameters				

- Estimate penalty parameters by empirical Bayes
 - Marginal likelihood, equivalent to an exhaustive cross-validation (Fong and Holmes 2019)
 - Maximum marginal likelihood estimates for the group-specific penalties:

$$\hat{\boldsymbol{\lambda}} = \operatorname*{argmax}_{\boldsymbol{\lambda}} \pi(\boldsymbol{y}|X, lpha, \boldsymbol{\lambda}) = \operatorname*{argmax}_{\boldsymbol{\lambda}} \int_{\boldsymbol{\beta}} \pi(\boldsymbol{y}|X, \boldsymbol{\beta}) \pi(\boldsymbol{\beta}|lpha, \boldsymbol{\lambda}) \mathrm{d} \boldsymbol{\beta}$$

• Relatively hard: use approximation

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	00000	000	00000	
Estimation of r	nodel parai	meters			

- Estimate penalty parameters by empirical Bayes
 - Marginal likelihood, equivalent to an exhaustive cross-validation (Fong and Holmes 2019)
 - Maximum marginal likelihood estimates for the group-specific penalties:

$$\hat{\boldsymbol{\lambda}} = \operatorname*{argmax}_{\boldsymbol{\lambda}} \pi(\boldsymbol{y}|X, lpha, \boldsymbol{\lambda}) = \operatorname*{argmax}_{\boldsymbol{\lambda}} \int_{\boldsymbol{\beta}} \pi(\boldsymbol{y}|X, \boldsymbol{\beta}) \pi(\boldsymbol{\beta}|lpha, \boldsymbol{\lambda}) \mathrm{d} \boldsymbol{\beta}$$

- Relatively hard: use approximation
- Once λ known: estimate β using standard implementation (e.g. glmnet for fast point estimate)

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	00000	000	00000	
Optimising t	he marginal like	elihood			

Optimise in three steps:

- Consider group-adaptive *ridge* (normal prior): obtain fast ridge penalty estimates
- For group-adaptive *elastic net*: show that the prior distribution for the linear predictors is approximately (multivariate) normal
- **③** Transform ridge penalties to elastic net penalties

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	00000	000	00000	
Step 1: fast ridge	e estimates				

• Low-dimensional representation of marginal likelihood in terms of linear predictor $\eta = X\beta \in \mathbb{R}^n$ (Veerman, Leday, and Wiel 2019):

$$\pi(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\alpha}, \boldsymbol{\lambda}) = \int_{\boldsymbol{\beta}} \pi(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\beta}) \pi(\boldsymbol{\beta}|\boldsymbol{\alpha}, \boldsymbol{\lambda}) \mathrm{d}\boldsymbol{\beta} = \int_{\boldsymbol{\eta}} \pi(\boldsymbol{y}|\boldsymbol{\eta}) \pi(\boldsymbol{\eta}|\boldsymbol{\alpha}, \boldsymbol{\lambda}) \mathrm{d}\boldsymbol{\eta}$$

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	00000	000	00000	
Step 1: fast ridg	e estimates				

• Low-dimensional representation of marginal likelihood in terms of linear predictor $\eta = X\beta \in \mathbb{R}^n$ (Veerman, Leday, and Wiel 2019):

$$\pi(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\alpha}, \boldsymbol{\lambda}) = \int_{\boldsymbol{\beta}} \pi(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\beta}) \pi(\boldsymbol{\beta}|\boldsymbol{\alpha}, \boldsymbol{\lambda}) \mathrm{d}\boldsymbol{\beta} = \int_{\boldsymbol{\eta}} \pi(\boldsymbol{y}|\boldsymbol{\eta}) \pi(\boldsymbol{\eta}|\boldsymbol{\alpha}, \boldsymbol{\lambda}) \mathrm{d}\boldsymbol{\eta}$$

 For ridge models (α = 0) with group-specific ridge penalties λ_R, the prior distribution of the linear predictors is known:

$$\boldsymbol{\eta} := \boldsymbol{X}\boldsymbol{\beta} \sim N\left(\boldsymbol{0}, \sum_{g=1}^{G} \lambda_{R,g}^{-1} \boldsymbol{X}_{g} \boldsymbol{X}_{g}^{T}\right)$$

with X_g the observed data for variable group $g,\,X_gX_g^T\in\mathbb{R}^{n\times n}$

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	00000	000	00000	
Step 1: fast ridg	e estimates				

• Low-dimensional representation of marginal likelihood in terms of linear predictor $\eta = X \beta \in \mathbb{R}^n$ (Veerman, Leday, and Wiel 2019):

$$\pi(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\alpha}, \boldsymbol{\lambda}) = \int_{\boldsymbol{\beta}} \pi(\boldsymbol{y}|\boldsymbol{X}, \boldsymbol{\beta}) \pi(\boldsymbol{\beta}|\boldsymbol{\alpha}, \boldsymbol{\lambda}) \mathrm{d}\boldsymbol{\beta} = \int_{\boldsymbol{\eta}} \pi(\boldsymbol{y}|\boldsymbol{\eta}) \pi(\boldsymbol{\eta}|\boldsymbol{\alpha}, \boldsymbol{\lambda}) \mathrm{d}\boldsymbol{\eta}$$

 For ridge models (α = 0) with group-specific ridge penalties λ_R, the prior distribution of the linear predictors is known:

$$\boldsymbol{\eta} := \boldsymbol{X}\boldsymbol{\beta} \sim N\left(\boldsymbol{0}, \sum_{g=1}^{G} \lambda_{R,g}^{-1} \boldsymbol{X}_{g} \boldsymbol{X}_{g}^{T}\right)$$

with X_g the observed data for variable group $g,\,X_gX_g^T\in \mathbb{R}^{n\times n}$

• Approximate the low-dimensional integral with a Laplace approximation and optimise to obtain $\hat{\lambda}_R$

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Step 2: act no	rmal				

- Problem: for $\alpha \neq 0$ we do not know $\pi(\pmb{\eta}|\pmb{\lambda},\alpha)$
- Solution: approximate by a multivariate normal:

$$\pi(\boldsymbol{\eta}|\alpha, \boldsymbol{\lambda}) \approx N\left(0, \sum_{g=1}^{G} v_g X_g X_g^T\right)$$

with prior variances $v_g=\mathrm{Var}^{\mathsf{EN}}_{\beta_k\mid\alpha,\lambda_{g_k}}[\beta_k].$ • $\hat{v}_g=\hat{\lambda}_{R,g}^{-1}$

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Why would th	is approximat	ion work?			

$$\eta_i = X_{i,:}\boldsymbol{\beta} = \sum_{k=1}^p X_{i,k}\beta_k$$

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Why would th	is approximat	ion work?			

$$\eta_i = X_{i,:}\boldsymbol{\beta} = \sum_{k=1}^p X_{i,k}\beta_k$$

• Multivariate CLT (Eicker 1966): η is asymptotically multivariate normal

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Why would t	his approximat	ion work?			

$$\eta_i = X_{i,:}\boldsymbol{\beta} = \sum_{k=1}^p X_{i,k}\beta_k$$

- Multivariate CLT (Eicker 1966): η is asymptotically multivariate normal
 - Assumptions on β : each β_k has finite group-specific prior mean and variance
 - \bullet Assumptions on $X{:}~X\in \mathbb{R}^{n\times p}$ should be 'dense' in p

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Why would t	his approximat	ion work?			

$$\eta_i = X_{i,:}\boldsymbol{\beta} = \sum_{k=1}^p X_{i,k}\beta_k$$

- Multivariate CLT (Eicker 1966): η is asymptotically multivariate normal
 - Assumptions on β : each β_k has finite group-specific prior mean and variance
 - \bullet Assumptions on $X{:}~X\in \mathbb{R}^{n\times p}$ should be 'dense' in p

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Why would t	his approximat	ion work?			

$$\eta_i = X_{i,:}\boldsymbol{\beta} = \sum_{k=1}^p X_{i,k}\beta_k$$

- Multivariate CLT (Eicker 1966): η is asymptotically multivariate normal
 - Assumptions on β : each β_k has finite group-specific prior mean and variance
 - \bullet Assumptions on $X{:}~X\in \mathbb{R}^{n\times p}$ should be 'dense' in p

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & 1.22 \\ 0 & 0 & \cdots & 0 & -1.60 \\ 0 & 0 & \cdots & 0 & -0.61 \end{bmatrix} \begin{bmatrix} 0.44 & 0.36 & \cdots & 1.65 & 1.22 \\ 0.18 & 1.00 & \cdots & -0.90 & -1.60 \\ -1.00 & 0.18 & \cdots & 0.22 & -0.61 \end{bmatrix} \begin{bmatrix} 0.44 & 0.36 & \cdots & 1.65 & 12200 \\ 0.18 & 1.00 & \cdots & -0.90 & 16000 \\ -1.00 & 0.18 & \cdots & 0.22 & -6100 \end{bmatrix}$$

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Cton 2. tron	oforma wideo to	lastis not nonaltic			

Step 3: transform ridge to elastic net penalties

$$h(\lambda_g) := \operatorname{Var}_{\beta_k \mid \alpha, \lambda_g}^{\mathsf{EN}}[\beta_k] \stackrel{\text{set}}{=} \hat{v}_g = \hat{\lambda}_{R,g}^{-1}. \text{ Root finding: } \hat{\boldsymbol{\lambda}} = h^{-1}\left(\hat{\boldsymbol{\lambda}}_R^{-1}\right)$$

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	00000	000	00000	

Step 3: transform ridge to elastic net penalties

$$h(\lambda_g) := \operatorname{Var}_{\beta_k \mid \alpha, \lambda_g}^{\mathsf{EN}}[\beta_k] \stackrel{\text{set}}{=} \hat{v}_g = \hat{\lambda}_{R,g}^{-1}.$$
 Root finding: $\hat{\boldsymbol{\lambda}} = h^{-1}\left(\hat{\boldsymbol{\lambda}}_R^{-1}\right)$

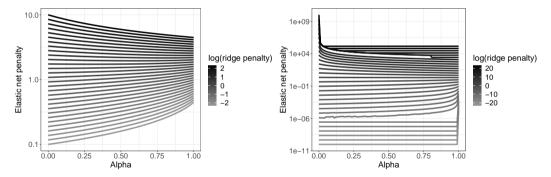


Figure: Transformation ridge penalty to elastic net penalty for different α

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	•00	00000	
Application ⁻	to classifying tr	eatment response			

- Main data (n = 88, p = 2114): miRNA expression
- Co-data: 8 variable groups, reflecting difference tumor vs normal tissue (other samples)
- Predict therapy response in colon cancer: clinical benefit vs disease progression

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Application	to classifying tr	eatment response	2		

- Main data (n = 88, p = 2114): miRNA expression
- Co-data: 8 variable groups, reflecting difference tumor vs normal tissue (other samples)
- Predict therapy response in colon cancer: clinical benefit vs disease progression
- Assess computing time and performance in 10-fold cross-validation of the following methods:

Method	Group-adaptive	Generic in response
elastic net (baseline)	х	V
fwEN (groups)	х	V
fwEN (continuous)	х	V
ipflasso	v/x	V
gren	V	х
squeezy	V	V

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Results					

Group-penalties:

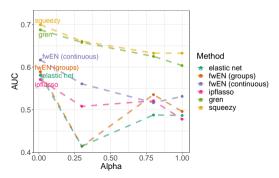
	Mixing parameter		
penalty	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$
$\hat{\lambda}_1^{EN}$	100	24	14
$\hat{\lambda}_2^{EN},\ldots,\hat{\lambda}_8^{EN}$	$\approx 10^8$	$\approx 14 * 10^3$	$\approx 14 * 10^3$

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Results					

Group-penalties:

	Mixing parameter			
penalty	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$	
$\hat{\lambda}_1^{EN}$	100	24	14	
$\hat{\lambda}_2^{EN}, \dots, \hat{\lambda}_8^{EN}$	$\approx 10^8$	$\approx 14 * 10^3$	$\approx 14 * 10^3$	

Predictive performance:

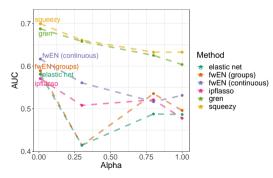


Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Results					

Group-penalties:

	Mixing parameter				
penalty	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$		
$\hat{\lambda}_1^{EN}$	100	24	14		
$\hat{\lambda}_2^{EN},\ldots,\hat{\lambda}_8^{EN}$	$\approx 10^8$	$\approx 14 * 10^3$	$\approx 14 * 10^3$		

Predictive performance:



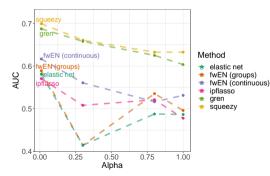
Computing time (10 folds):						
Method	Time (s)					
elastic net	10.17					
fwEN (groups)	120.20					
squeezy	130.58					
fwEN (continuous)	140.11					
gren	3510.52					
ipflasso	4220.39					

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Results					

Group-penalties:

	Mixing parameter				
penalty	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$		
$\hat{\lambda}_1^{EN}$	100	24	14		
$\hat{\lambda}_2^{EN}, \dots, \hat{\lambda}_8^{EN}$	$\approx 10^8$	$\approx 14 * 10^3$	$\approx 14 * 10^3$		

Predictive performance:



Computing time (10 folds): Method Time (s) elastic net 10.17 fwEN (groups) 120.20 squeezy 130.58 fwEN (continuous) 140.11 gren 3510.52 ipflasso 4220.39

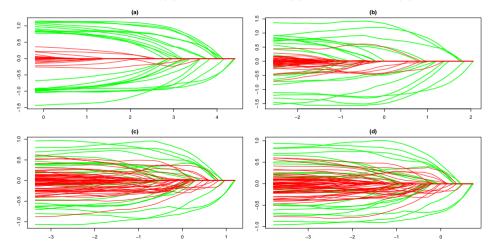
Conclusion:

- Adaptive learning from co-data improves performance
- Squeezy performs as well as gren, but 25 times faster

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Better variable selection					

Simulation setting

(a): Strongly informative co-data; (b) Weakly informative; (c) Non-informative; (d) No co-data



Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Extensions					

- Approximation works for other priors: spike-and-slab, bridge, but not horseshoe
- MVN can be visually checked a posteriori (Q-Q plot)
- Continuous co-data; overlapping groups

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	●0000	
Part II: Average t	reatment effect	(ATE) estimation	using adaptive	EN	

- Non-randomized setting
- Potential outcomes framework. ATE: $\theta = E[Y^{d=1}] E[Y^{d=0}]$
- Standard doubly robust estimator
- Estimator for ATE in HD settings
- Link to Part I

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	0000	
Why does a simple approach fail in HD settings?			ngs?		

• Standard doubly robust estimator:

$$\hat{E}[Y^{d=1}] = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{Y_i D_i}{\hat{\mathsf{ps}}(X_i)} - \frac{\hat{Y}(1, X_i)(D_i - \hat{\mathsf{ps}}(X_i))}{\hat{\mathsf{ps}}(X_i)} \right\} \\ = \frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{Y}(1, X_i) + \frac{D_i(Y_i - \hat{Y}(1, X))}{\hat{\mathsf{ps}}(X_i)} \right\}$$

 $D_i = 0, 1$ (treatment), Y_i : response, $\hat{Y}(1, X_i)$: response prognosis, $\hat{ps}(X_i)$: propensity score (may depend on clinical confounders as well)

• Likewise, $\hat{E}[Y^{d=0}]$. ATE: $\hat{\theta} = \hat{E}[Y^{d=1}] - \hat{E}[Y^{d=0}]$

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	0000	
Why does a simple approach fail in HD settings?			ngs?		

• Standard doubly robust estimator:

$$\hat{E}[Y^{d=1}] = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{Y_i D_i}{\hat{\mathsf{ps}}(X_i)} - \frac{\hat{Y}(1, X_i)(D_i - \hat{\mathsf{ps}}(X_i))}{\hat{\mathsf{ps}}(X_i)} \right\} \\ = \frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{Y}(1, X_i) + \frac{D_i(Y_i - \hat{Y}(1, X))}{\hat{\mathsf{ps}}(X_i)} \right\}$$

 $D_i = 0, 1$ (treatment), Y_i : response, $\hat{Y}(1, X_i)$: response prognosis, $\hat{ps}(X_i)$: propensity score (may depend on clinical confounders as well)

- Likewise, $\hat{E}[Y^{d=0}]$. ATE: $\hat{\theta} = \hat{E}[Y^{d=1}] \hat{E}[Y^{d=0}]$
- Works when either $\hat{Y}(t, X_i), t = 0, 1$ or $\hat{ps}(X_i)$ is unbiased.
- In high-dimensional settings both are inevitably biased.

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Solution: sample splitting					

Chernozhukov et al. 2018 show that sample splitting provides a solution:

$$\tilde{E}[Y^{d=1}] = \frac{1}{n} \sum_{i=1}^{n} \left\{ \tilde{Y}^{(-i)}(1, X_i) + \frac{D_i(Y_i - \tilde{Y}^{(-i)}(1, X_i))}{\tilde{\mathsf{ps}}^{(-i)}(X_i)} \right\},\$$

where $\tilde{Y}^{(-i)}(d, X_i), \widetilde{\mathsf{ps}}^{(-i)}(X_i)$ refer to (mean) predictions on models learnt without sample *i*.

Can be extended to *local* ATE (= function of X_i) \rightarrow relevant for treatment optimization.

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	/
Links to Part I					

- Trivial link: three prediction problems, Y(0, X), Y(1, X), ps(X).
 - Adaptive EN is a candidate learner for these
 - Sample splitting \Rightarrow computational efficiency for penalty estimation crucial

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Links to Part I					

- Trivial link: three prediction problems, Y(0, X), Y(1, X), ps(X).
 - Adaptive EN is a candidate learner for these
 - $\bullet\,$ Sample splitting $\Rightarrow\,$ computational efficiency for penalty estimation crucial

• Coupling predictions Y(0, X) and Y(1, X). Attractive to limit or shrink the number of parameters to estimate.

Introduction	Model	Estimation	Results	Part II: ATE estimation	References	
000	0	000000	000	00000		
Coupling predictions $Y(0, X)$ and $Y(1, X)$						

Interpretended in the second secon

- $Y(D_i, X_i) = \beta_0 + D_i \gamma_0 + X_i \beta$
- Often too simple, not realistic.

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Coupling predictions $Y(0, X)$ and $Y(1, X)$					

- Homogenous effect of variables.
 - $Y(D_i, X_i) = \beta_0 + D_i \gamma_0 + X_i \boldsymbol{\beta}$
 - Often too simple, not realistic.

- Interaction effect
 - Interaction effect. $Y(D_i, X_i) = \beta_0 + D_i \gamma_0 + X_i \beta + D_i X_i \gamma$
 - β : EN $(\alpha, \lambda_{\beta})$ prior; γ : EN $(\alpha, \lambda_{\gamma})$ prior
 - Shrinks differential effects (γ) to 0. Squeezy applies to estimate λ_{β} and λ_{γ}

Introduction	Model	Estimation	Results	Part II: ATE estimation	References
000	0	000000	000	00000	
Coupling predictions $Y(0, X)$ and $Y(1, X)$					

Homogenous effect of variables.

- $Y(D_i, X_i) = \beta_0 + D_i \gamma_0 + X_i \beta$
- Often too simple, not realistic.

- Interaction effect
 - Interaction effect. $Y(D_i, X_i) = \beta_0 + D_i \gamma_0 + X_i \beta + D_i X_i \gamma$
 - β : EN $(\alpha, \lambda_{\beta})$ prior; γ : EN $(\alpha, \lambda_{\gamma})$ prior
 - Shrinks differential effects (γ) to 0. Squeezy applies to estimate λ_{meta} and $\lambda_{m\gamma}$

Ontrol group as prior

- $Y(D_i = 0, X_i) = \beta_0 + X_i \beta$; and $Y(D_i = 1, X_i) = \gamma_0 + X_i \gamma$
- $\gamma_k: \mathsf{EN}(\alpha, \lambda_{g_k(\hat{\beta}_k)})$ prior. E.g. $g_k(0) = 1; g_k(\hat{\beta}_k) = 2$, for $\hat{\beta}_k \neq 0$
- Attractive when control group is large, (experimental) treatment group is small
- Squeezy applies to estimate λ 's; extends efficiently to inclusion of variable groups.

- More information on the adaptive EN in (van Nee, van de Brug, and van de Wiel 2021)
- R-package squeezy available on CRAN

- Boulesteix, Anne-Laure et al. (2017). "IPF-LASSO: Integrative-penalized regression with penalty factors for prediction based on multi-omics data". In: *Computational and mathematical methods in medicine* 2017.
- Chernozhukov, Victor et al. (2018). "Double/debiased machine learning for treatment and structural parameters". In: *The Econometrics Journal* 21.1, pp. C1–C68.
- Eicker, F (1966). "A multivariate central limit theorem for random linear vector forms". In: *The Annals of Mathematical Statistics*, pp. 1825–1828.
- Fong, Edwin and Chris Holmes (2019). "On the marginal likelihood and cross-validation". In: arXiv preprint arXiv:1905.08737.
- Münch, Magnus M et al. (Dec. 2019). "Adaptive group-regularized logistic elastic net regression". In: *Biostatistics*. kxz062. ISSN: 1465-4644. DOI:
 - 10.1093/biostatistics/kxz062.
- Tay, J Kenneth et al. (2020). "Feature-weighted elastic net: using" features of features" for better prediction". In: arXiv preprint arXiv:2006.01395.
- van Nee, Mirrelijn M, Tim van de Brug, and Mark A van de Wiel (2021). "Fast marginal likelihood estimation of penalties for group-adaptive elastic net". In: *arXiv preprint arXiv:2101.03875*.
- Veerman, Jurre R, Gwenaël GR Leday, and Mark A van de Wiel (2019). "Estimation of variance components, heritability and the ridge penalty in high-dimensional generalized linear models". In: Communications in Statistics-Simulation and Computation, pp. 1–19.

Multivariate central limit theorem for linear random vector forms (Eicker 1966)

Suppose $\beta_j \stackrel{ind.}{\sim} \pi_{g_j}(\beta_j)$ for j = 1, ..., p and group-specific prior $\pi_{g_j}(\cdot)$, with $E(\beta_j) = 0$ and $\operatorname{Var}(\beta_j) = \tau_{g_j}^2 \in (0, \infty)$. For g = 1, ..., G, let G_g be the group size and let $X_g \in \mathbb{R}^{n \times G_g}$ be the weights corresponding to group g. Let X_{*j} denote the j^{th} column of $X \in \mathbb{R}^{n \times p}$. Suppose $X_{*j} \neq \mathbf{0} \in \mathbb{R}^n$ for all j, rank(X) = n for all p, and for $p \to \infty$, $\sum_{j=1,...,p} X_{*j}^T (XX^T)^{-1} X_{*j} \to 0.$ (1)

Then, for fixed G, fixed n, and $p \to \infty$, $\left(\sum_{g} \tau_{g}^{2} X_{g} X_{g}^{T}\right)^{-1/2} X \boldsymbol{\beta} \xrightarrow{d} N(0, I_{n \times n}), \tag{2}$

where $I_{n \times n}$ is the $(n \times n)$ -dimensional identity matrix and $\left(\sum_{g} \tau_{g}^{2} X_{g} X_{g}^{T}\right)^{-1/2}$ is the inverse of the unique positive definite square root of $\sum_{g} \tau_{g}^{2} X_{g} X_{g}^{T}$.

If n = 1 then condition (1) is equivalent to $\max_{j=1,...,p} x_{1j}^2 / \sum_{j=1}^p x_{1j}^2 \to 0$, for $p \to \infty$. Informally, condition (1) can be interpreted as each variable being asymptotically negligible in size compared to the full data set.