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Abstract

We consider the problem of jointly estimating multiple inverse covariance matrices from
high-dimensional data consisting of distinct classes. An f3-penalized maximum likelihood
approach is employed. The suggested approach is flexible and generic, incorporating several
other /5-penalized estimators as special cases. In addition, the approach allows specifica-
tion of target matrices through which prior knowledge may be incorporated and which can
stabilize the estimation procedure in high-dimensional settings. The result is a targeted
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fused ridge estimator that is of use when the precision matrices of the constituent classes
are believed to chiefly share the same structure while potentially differing in a number of
locations of interest. It has many applications in (multi)factorial study designs. We fo-
cus on the graphical interpretation of precision matrices with the proposed estimator then
serving as a basis for integrative or meta-analytic Gaussian graphical modeling. Situa-
tions are considered in which the classes are defined by data sets and subtypes of diseases.
The performance of the proposed estimator in the graphical modeling setting is assessed
through extensive simulation experiments. Its practical usability is illustrated by the dif-
ferential network modeling of 12 large-scale gene expression data sets of diffuse large B-cell
lymphoma subtypes. The estimator and its related procedures are incorporated into the
R-package rags2ridges.

Keywords: differential network estimation, Gaussian graphical modeling, generalized
fused ridge, high-dimensional data, fs-penalized maximum likelihood, structural meta-
analysis

1. Introduction

High-dimensional data are ubiquitous in modern statistics. Consequently, the fundamen-
tal problem of estimating the covariance matrix or its inverse (the precision matrix) has
received renewed attention. Suppose we have n i.i.d. observations of a p-dimensional vari-
ate distributed as Np(p,X). The Gaussian log-likelihood parameterized in terms of the
precision matrix = 37! is then given by:

L(Q;S) x In|Q| — tr(SQ), (1)

where S is the sample covariance matrix. When n > p the maximum of (1) is attained at
the maximum likelihood estimate (MLE) QML — =1 However, in the high-dimensional
case, i.e., when p > n, the sample covariance matrix S is singular and its inverse ceases to
exist. Furthermore, when p &~ n, the sample covariance matrix may be ill-conditioned and
the inversion becomes numerically unstable. Hence, these situations necessitate usage of
regularization techniques.

Here, we study the simultaneous estimation of numerous precision matrices when mul-
tiple classes of high-dimensional data are present. Suppose y;, is a realization of a p-
dimensional Gaussian random vector for ¢ = 1,...,n, independent observations nested
within g = 1,..., G classes, each with class-dependent covariance ¥, i.e., y;, ~ Np(ug, 3y)
for each designated class g. Hence, for each class a data set consisting of the ny, X p matrix
Y, = [ylg, . ,yngg]T is observed. Without loss of generality p, = 0 can be assumed
as each data set Y, can be centered around its column means. The class-specific sample
covariance matrix is given by

n
1 {5 T_loT
S0= 5, LYY = Yy Yo,
9 =1 g

which constitutes the well-known MLE of ¥, as discussed above. The closely related pooled
sample covariance matrix

1 G ng 1 G
So= L Y vvh = L3 ns, ®
® g=1i=1 ® g=1
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where ne = 25:1 ng, is an oft-used estimate of the common covariance matrix across
classes. In the high-dimensional setting, in which p > n, (implying p > ngy), the S, and S,
are singular and their inverses do not exist. Our primary interest thus lies in estimating the
precision matrices 21 = 21_1, o, Qo = 251, as well as their commonalities and differences,
when p > no. We will develop a general fo-penalized ML framework to this end which we
designate targeted fused ridge estimation.

The estimation of multiple precision matrices from high-dimensional data classes is of
interest in many applications. The field of oncogenomics, for example, often deals with
high-dimensional data from high-throughput experiments. Class membership may have
different connotations in such settings. It may refer to certain sub-classes within a single
data set such as cancer subtypes (cancer is a very heterogeneous disease, even when present
in a single organ). It may also designate different data sets or studies. Likewise, the class
indicator may also refer to a conjunction of both subclass and study membership to form
a two-way design of factors of interest (e.g., breast cancer subtypes present in a batch
of study-specific data sets), as is often the case in oncogenomics. Our approach is thus
motivated by the meta-analytic setting, where we aim for an integrative analysis in terms
of simultaneously considering multiple data (sub-)classes, data sets, or both. Its desire is
to borrow statistical power across classes by effectively increasing the sample size in order
to improve sensitivity and specificity of discoveries.

1.1. Related Literature

There have been many proposals for estimating a single precision matrix in high-dimensional
data settings. A popular approach is to amend (1) with an ¢;-penalty (Yuan and Lin, 2007;
Banerjee et al., 2008; Friedman et al., 2008; Yuan, 2008). The solution to this penalized
problem is generally referred to as the graphical lasso and it is popular as it performs
automatic model selection, i.e., the resulting estimate is sparse. It is heavily used in Gaus-
sian graphical modeling (GGM) as the support of a Gaussian precision matrix represents a
Markov random field (Lauritzen, 1996).

The f¢1-approach has been extended to deal with more than a single sample-group. Ha
et al. (2015) employed a two-class approach that first extracts a global precision matrix
by the graphical lasso after which precision regressions are employed to find local differ-
ences. Zhao et al. (2014) also regard the two-class setting but, in contrast to many other
approaches, focus on direct estimation of the difference between two precision matrices.
Many works also move beyond the two-class setting. Guo et al. (2011) have proposed a
parametrization of class-specific precision matrices that expresses the individual elements
as a product of shared and class-specific factors. They include ¢;-penalties on both the
shared and class-specific factors in order to jointly estimate the sparse precision matrices
(representing graphical models). The penalty on the shared factors promotes a shared
sparsity structure while the penalty on the class-specific factors promotes class-specific de-
viations from the shared sparsity structure. Danaher et al. (2014) have generalized these
efforts by proposing the joint graphical lasso which allows for various penalty structures.
They study two particular choices: the group graphical lasso that encourages a shared spar-
sity structure across the class-specific precision matrices, and the fused graphical lasso that
promotes a shared sparsity structure as well as shared precision element-values.
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The methods that move beyond the two-class setting have in common that they (implic-
itly) assume the same degree of similarity between all possible pairs of precision matrices.
Two recent works provide an important generalization by allowing for varying degrees of
similarity: Peterson et al. (2015) and Saegusa and Shojaie (2016). These works permit,
respectively from a Bayesian and frequentist perspective, for the pair-specific similarities to
be estimated from the data. Our motivation is related to these works (see Section 1.2).

A hypothesis testing literature on multiple high-dimensional precision matrices has de-
veloped concurrently with the estimation literature. Generally, the testing approaches are
supported by penalized estimation. As in estimation, the approaches can be demarcated
by either a global or a local thrust (Cai, 2017). The former focuses on testing the overall
difference between two precision matrices. The latter focuses on the simultaneous testing
of the non-redundant individual entries of the difference matrix between two precision ma-
trices. Stadler and Mukherjee (2017) provide a two-sample global testing approach under
a sparsity assumption. Xia et al. (2015) provide both a global test as well as local testing
through a (sparse) regression approach. See Cai (2017) for a review of recent work in testing
for high-dimensional covariance and precision structures.

1.2. Motivation of Approach

Testing of high-dimensional precision matrices is generally only powerful when the alterna-
tive is sparse. However, sparsity need not necessarily be a tenable assumption. Moreover,
the testing approaches are confined to two-class settings. Hence, we focus on estimation.
Our goal is to provide a multiple class joint-estimation method that does not depend on a
sparsity assumption and that allows for the flexible incorporation of prior information. We
motivate our approach below.

While simultaneous estimation and model selection can be deemed elegant, automatic
sparsity is not always an asset. It may be that one is intrinsically interested in more
accurate representations of class-specific precision matrices in the high-dimensional situa-
tion. By ‘intrinsically’ we mean a representation that does not assume a (specific) sparsity
pattern or structure. Such representations are useful in enabling in the high-dimensional
setting (standard) statistical applications directly dependent on the precision matrix, such
as covariance-regularized regression (Witten and Tibshirani, 2009) or discriminant analysis
(Price et al., 2015). One is then not after sparse representations, but rather (relatively)
low-variance representations of the precision(s) in high-dimension. It is then natural to
prefer usage of a regularization method that shrinks the estimated elements of the precision
matrices proportionally.

In addition, when indeed considering network representations of data (such that some
level of sparsity is ultimately desired), one need not necessarily prefer the encouragement
of sparsity through an ¢i-approach. It is well-known that ¢;-based support recovery and
estimation is consistent only under the assumption that the true (differential) graphical
model is (very) sparse. The f;-penalty is unable to retrieve the sparsity pattern when
the number of truly non-null elements exceeds the available sample size (van Wieringen
and Peeters, 2016). This can be termed undesirable as there is accumulating evidence
that many networks traditionally represented by graphical models, such as biochemical
pathways governing disease aetiology and progression, are dense (Boyle et al., 2017). In
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such a situation one may wish to couple a non-sparsity-inducing penalty with a post-hoc
selection step allowing for probabilistic control over element selection (van Wieringen and
Peeters, 2016). We therefore consider ¢ or ridge-type penalization.

The ¢s-approach we consider will be targeted in the sense that it allows for the specifi-
cation of (possibly class-specific) target matrices that may encode prior information. The
motivation for including targets in general is that well-informed choices of the target can
greatly improve the estimation in terms of loss/risk (Section 5). In addition, our framework
also allows for varying degrees of similarity between (all possible) pairs of class-specific pre-
cision matrices through the incorporation of a penalty matrix (Section 2). The diagonal
elements of this matrix determine the rates of shrinkage of the class-specific precision ma-
trices towards their corresponding targets while the off-diagonal entries determine the rates
of pair-specific fusion. The proposed framework is thus flexible in the sense that it allows
for the incorporation of prior information along two roads as well as their interplay: (i) via
the target matrices, and (ii) via the penalty matrix. At one end of the spectrum we can
include weak prior information through uninformative shared target matrices while letting
the similarities between all pairs of precision matrices be subsequently determined by the
data (analogously to Peterson et al., 2015; Saegusa and Shojaie, 2016). At the other end
we can include strong prior knowledge through informative class-specific target matrices
while imposing restrictions on class-specific similarities by imposing (exclusion) constraints
on the penalty matrix.

1.3. Overview

Section 2 presents the targeted fused ridge estimation framework. The proposed fused
£o-penalty allows for the simultaneous estimation of multiple precision matrices from high-
dimensional data classes that chiefly share the same structure but that may differentiate in
locations of interest. The usage of the mentioned target and penalty matrices makes the
framework flexible and general. It contains the recent work of Price et al. (2015) and van
Wieringen and Peeters (2016) as special cases. It may also be viewed as an {s-generalization
of the work of Danaher et al. (2014). Moreover, the framework can be viewed as bridging
the work of Danaher et al. (2014) and Saegusa and Shojaie (2016), by allowing varying
degrees of class-specific similarities, ranging from completely fixed for all possible pairs to
completely data-determined for all possible pairs. In the same vein, it may be viewed as a
computationally feasible alternative to the work of Peterson et al. (2015), as it allows for the
incorporation of prior information without having to formally specify prior distributions.
As such it evades the computational burden of a full Bayes approach.

The method is contingent upon the selection of penalty values and target matrices,
topics that are treated in Section 3. This section shows how—through the penalty values
and target matrices—varying levels of specificity may be incorporated. Section 4 then
focuses on the graphical interpretation of precision matrices. It shows how the fused ridge
precision estimates may be coupled with post-hoc support determination in order to arrive
at multiple graphical models. We will refer to this coupling as the fused graphical ridge.
This then serves as a basis for integrative or meta-analytic network modeling. Section
5 then assesses the performance of the proposed estimator through extensive simulation
experiments. These simulations show that the inclusion of target matrices can improve
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estimation efficiency. Section 6 illustrates the techniques by applying it in a large scale
integrative study of gene expression data of diffuse large B-cell lymphoma. The focus is then
on finding common motifs and motif differences in network representations of (deregulated)
molecular pathways. The analysis shows the added value of the targeted fusion approach
to integration by juxtaposing it with a nonintegrative approach. Moreover, it shows how
pilot data and database information can be combined to provide effective target matrices.
Section 7 concludes with a discussion.

1.4. Notation

Some additional notation must be introduced. Throughout the text and supplementary
material, we use the following notation for certain matrix properties and sets: We use
A > 0 and B > 0 to denote symmetric positive definite and positive semi-definite matrices
A and B, respectively. By R, R, and R, we denote the real numbers, the non-negative
real numbers, and the strictly positive real numbers, respectively. In notational analogue,
SP, Sﬁ, and Si 4 are used to denote the space of p x p real symmetric matrices, the real
symmetric positive semi-definite matrices, and real symmetric positive definite matrices,
respectively. That is, e.g., S¥, = {X € RP*? : X = X" AX > 0}. Negative subscripts
similarly denote negative reals and negative definiteness. By A > B and similar we denote
element-wise relations, i.e., (A)j; > (B)jq for all (j,¢). Matrix subscripts will usually
denote class membership, e.g., A, denotes (the realization of) matrix A in class g. For
notational brevity we will often use the shorthand {A4} to denote the set {Ag}gzl.

The following notation is used throughout for operations: We write diag(A) for the
column vector composed of the diagonal of A and vec(A) for the vectorization operator
which stacks the columns of A on top of each other. Moreover, o will denote the Hadamard
product while ® refers to the Kronecker product.

We will also repeatedly make use of several special matrices and functions. We let
I, denote the (p x p)-dimensional identity matrix. Similarly, J, will denote the (p x p)-
dimensional all-ones matrix. In addition, 0 will denote the null-matrix, the dimensions of
which should be clear from the context. Lastly, || - [|% and 1] -] will stand for the squared
Frobenius norm and the indicator function, respectively.

2. Targeted Fused Ridge Estimation

In this section we first give a general formulation of the targeted fused ridge estimation
problem (Section 2.1). Next, the maximizing class-specific argument is explored as well
as its properties (Section 2.2). Last, an algorithm is presented with which the general,
multiple-class solution can be obtained (Section 2.3).

2.1. A General Penalized Log-Likelihood Problem

Suppose G classes of (ng X p)-dimensional data exist and that the samples within each class
are i.i.d. normally distributed. The log-likelihood for the data takes the following form
under the additional assumption that all n, observations are independent:

L({2};{Sg}) ox an{ln\ﬂgl - tr(sgﬂg)}' (3)
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We desire to obtain estimates {Qg} € S, of the precision matrices for each class. Though
not a requirement, we primarily consider situations in which p > ng for all g, necessitating
the need for regularization. To this end, amend (3) with the fused ridge penalty given by

A A
I (9} Dgroa - (To1) = D2 21020~ + 30 742 (0, ~Tg,)~(5, =T,

g 91,92

(4)

where the Ty, € S? indicate known class-specific target matrices (see also Section 3.3),
the Ay € R4y denote class-specific ridge penalty parameters, and the A\; 4, € Ry are
pair-specific fusion penalty parameters subject to the requirement that Ay 4, = Agg,. All
penalties can then be conveniently summarized into a non-negative symmetric matrix A =
[Agigo] which we call the penalty matriz. The diagonal of A corresponds to the class-
specific ridge penalties whereas off-diagonal entries are the pair-specific fusion penalties.
The rationale and use of the penalty matrix is motivated further in Section 3.1. Combining
(3) and (4) yields a general targeted fused ridge estimation problem:

arg max {c (UARERIEDY %Hﬂg—TgHi -2 Ai;”Hmm—Tgl)—(ngz—ng)Hi} )
{92,)esy, 9 91,92

The problem of (5) is strictly concave. Furthermore, it is worth noting that non-zero fusion

penalties, A\g, 4, > 0 for all g; # g2, alone will not guarantee uniqueness when p > ne: In

high dimensions, all ridge penalties A4y should be strictly positive to ensure identifiability.

These and other properties of the estimation problem are reviewed in Section 2.2.

The problem stated in (5) is very general. We shall sometimes consider a single common
ridge penalty A\gg = A for all g, as well as a common fusion penalty Ay 4, = As for all class
pairs g1 # go (cf., however, Section 3.1) such that A = Mg+ ¢(Jg—1I¢g). This simplification
leads to the first special case:

argmax{ {4} {Sq}) — ZHQ TgHF ZH g~ Tg) (ng_ng)H;}'

{Qg}esh, 91,92

Here and analogous to (5), A controls the rate of shrinkage of each precision €2, towards
the corresponding target T, (van Wieringen and Peeters, 2016), while Af determines the
retainment of entry-wise similarities between (4, — Ty, ) and (Q4,— T, ) for all class pairs
91 7 ga-

When T, = T for all g, the problem further simplifies to

argmax{ ({92,):{Sy}) - ZHQ ([ - AJ‘ZHQQI QQH?}y (6)

{Qg}es? | 91,92

where the targets are seen to disappear from the fusion term. Lastly, when T = 0 the
problem (6) reduces to its simplest form recently considered by Price et al. (2015). Appendix
A studies, in order to support an intuitive feel for the fused ridge estimation problem, its
geometric interpretation in this latter context.
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2.2. Estimator and Properties

There is no explicit solution to (5) except for certain special cases and thus an iterative
optimization procedure is needed for its general solution. As described in Section 2.3,
we employ a coordinate ascent procedure which relies on the concavity of the penalized
likelihood (see Lemma 10 in Appendix B.1) and repeated use of the following result, whose
proof (as indeed all proofs) has been deferred to Appendix B.2:

Proposition 1 Let {T,} € S% and let A € S be a fired penalty matriz such that A > 0
and diag(A) > 0. Furthermore, assume that €2 is positive definite and fized for all g # go.
The maximizing argument for class go of the optimization problem (5) is then given by

1/2 -1
_ - = .9 1 -
ng(Av{ﬂg}gyégo):{[AgoIer Bo =0 Tw)’| +5(80 AgOTgo} G
where
S, = Sq — @Q—T T, =T d&—)‘gf” 8
go = Ogo Z (£ ) go — Lgo» an go = ) (8)
Tgo Ngo

9#9o

with Agee = >, Aggy denoting the sum of the goth column (or row) of A.

Remark 2 Defining Tgo = Ty, in Proposition 1 may be deemed redundant. However, it
allows us to state equivalent alternatives to (8) without confusing notation. See Section 2.3
as well as Appendiz B.2 and Section 1 of the Supplementary Material.

Remark 3 The target matrices from Proposition 1 may be chosen nonnegative definite.
However, choosing n.d. targets may lead to ill-conditioned estimates in the limit. From a
shrinkage perspective we thus prefer to choose {Ty} € Si+. See Section 3.3.

Proposition 1 provides a function for updating the estimate of the ggoth class while fix-
ing the remaining parameters. As a special case, consider the following. If all off-diagonal
elements of A are zero no ‘class fusion’ of the estimates takes place and the maximiza-
tion problem decouples into G individual, disjoint ridge estimations: See Corollary 11 in
Appendix B.2. The next result summarizes some properties of (7):

Proposition 4 Consider the estimator of Proposition 1 and its accompanying assumptions.
Let 2, = (A,{Qg/}g/;ﬁg) be the precision matrix estimate of the gth class. For this
estimator, the following properties hold:

i. Q =0 for all A\gg € Ry ;
. lim Q =S lifzg?ég Agg =0 and p < ny;

Agg—0t

. lim Qg =T, if Ny < 00 for all ¢’ # g;
Agg—r00~

1. lim 7(Qg1 —Ty)= lim 7(f292 - Ty,) if )\g gy <00 for all {g}, g5} # {91, 92}
Agy gy 00 Agygg =00
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The first item of Proposition 4 implies that strictly positive \y44 are sufficient to guarantee
positive definite estimates from the ridge estimator. The second item implies that if ‘class
fusion’ is absent, then one obtains the standard MLE S;l as the right-hand limit for group
g, whose existence is only guaranteed when p < n,. The third item shows that the fused
ridge precision estimator for class g is shrunken exactly to its target matrix when the ridge
penalty tends to infinity while the fusion penalties do not. The last item shows that the
precision estimators of any two classes tend to a common estimate when the fusion penalty
between them tends to infinity while all remaining penalty parameters remain finite.

The attractiveness of the general estimator hinges upon the efficiency by which it can
be obtained. We state a result useful in this respect before turning to our computational
approach in Section 2.3:

Proposition 5 Let Q =0 (A {2}y ¢g) be the precision matriz estimate (7) for the
5,

gth class and define [fl |7l=
through:

The estimate Qg can then be obtained without inversion

L e - 1 S 2
Qy = X g — (Sg—)\ng)} DY {[/\ L+ 3 (S “ATe)’| - 2(89_)\ng)}.

Remark 6 Note that Proposition 5 implies that our framework also zmmedzately provides
for reqularized class-specific estimates of covariance matrices as Eg =\ Qg + (S )\ T g)-
Its properties are analogous to those stated in Proposition 4.

2.3. Algorithm

Equation (7) allows for updating the precision estimate Qg of class g by plugging in the
remaining qu, g # g, and assuming them fixed. Hence, from initial estimates, all preci-
sion estimates may be iteratively updated until some convergence criterion is reached. We
propose a block coordinate ascent procedure to solve (5) by repeated use of the results in
Proposition 1. This procedure is outlined in Algorithm 1. By the strict concavity of the
problem in (5), the procedure guarantees that, contingent upon convergence, the unique
maximizer is attained when considering all Qg jointly. Moreover, we can state the following
result:

Proposition 7 The gradient ascent procedure given in Algorithm 1 will always stay within
the realm of positive definite matrices S% ...

The procedure is implemented in the rags2ridges package within the R statistical
language (R Core Team, 2012). This implementation focuses on stability and efficiency.
With regard to the former: Equivalent (in terms of the obtained estimator) alternatives
to (8) can be derived that are numerically more stable for extreme values of A. The most
apparent such alternative is:

)\90‘ )

Sgo = Sgps Ty =Ty + > Aggo (Q,—T,), and Xy = (9)

n
9790 90

It ‘updates’ the target Tg instead of the sample covariance Sg and has the intuitive in-
terpretation that the target matrix for a given class in the fused case is a combination
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of the actual class target matrix and the ‘target corrected’ estimates of remaining classes.
The implementation makes use of this alternative where appropriate. See Section 1 of the
Supplementary Material for details on alternative updating schemes.

Algorithm 1 Pseudocode for the fused ridge block coordinate ascent procedure.
1: Input:

2: Sufficient data: (Si,m1),...,(Sa,ng)

3: Penalty matriz: A

4: Convergence criterion: € > 0

5: Output:

6: ?

T

8

9

FEstimates: Ql, .o, Qa
procedure RIDGEP.FUSED(Sy,...,Sg,n1,...,ng, A, €)
Initialize: ng) for all g.
forc=1,2,3,... do

10: for g=1,2,...,G do
11 Update Q2 := (A, Q7 ,.... Q7 Q) L a8™Y) by (7).
12: end for © At
c c— 2
13: if maxg{ 1€ Ag) HF} < ¢ then
o
14: return (QEC), cen (Cif))
15: end if
16: end for

17: end procedure

The worst-case asymptotic time complexity of the procedure is O(p?) due to the necessity
of the matrix square root. Efficiency is then secured through various roads. First, in certain
special cases closed-form solutions to (5) exist. When appropriate, these explicit solutions
are used. Moreover, these solutions may provide warm-starts for the general problem. See
Section 2 of the Supplementary Material for details on estimation in these special cases. Sec-
ond, the result from Proposition 5 is used, meaning that the relatively expensive operation of
matrix inversion is avoided. Third, additional computational speed was achieved by imple-
menting core operations in C++ via the R-packages Rcpp and RcppArmadillo (Sanderson,
2010; Eddelbuettel and Frangois, 2011; Francgois et al., 2012; Eddelbuettel, 2013). These
efforts make analyzes with large p feasible. Throughout, we will initialize the algorithm
with fléo) = p/tr(S,.) - I, for all g.

3. Penalty and Target Selection

In this section we discuss selection of the penalty parameters and the target matrices. First,
we discuss, by way of examples, how the penalty matrix connects to a penalty-graph and
how its structure may encode prior information in the analysis of various study-designs
(Section 3.1). Next, we present several computational approaches to select optimal values
for the parameters in the (possibly structured) penalty matrix (Section 3.2). Last, we give
several considerations in choosing target matrices (Section 3.3).

10
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3.1. The Penalty Graph and Analysis of Factorial Designs

Equality of all class-specific ridge penalties g4 is deemed restrictive, as is equality of all
pair-specific fusion penalties Ay, 4,. In many settings, such as the analysis of factorial designs,
finer control over the individual values of Ay and A, 4, befits the analysis. This will be
motivated by several examples of increasing complexity. In order to do so, some additional
notation is developed: The penalties of A can be summarized by a node- and edge-weighted
graph P = (W, H) where the vertex set W corresponds to the possible classes and the edge
set H corresponds to the similarities to be retained. The weight of node g € W is given by
Agg and the weight of edge (g1, g2) € H is then given by Ay, 4,. We refer to P as the penalty
graph associated with the penalty matrix A. The penalty graph P is simple and undirected
as the penalty matrix is symmetric. In the examples below we generally assume p > n,.

Example 1 Consider G = 2 classes or subtypes (ST) of diffuse large B-cell lymphoma
(DLBCL) patients with tumors resembling either so-called activated B-cells (ABC) or ger-
minal centre B-cells (GCB). Patients with the latter subtype have superior overall survival
(Alizadeh et al., 2000). As the GCB phenotype is more common than ABC, one might
imagine a scenario where the two class sample sizes are sufficiently different such that
ngcB > napc. Numeric procedures to obtain a common ridge penalty (see, e.g., Section
3.2) would then be dominated by the smaller group. Hence, choosing non-equal class ridge
penalties for each group will allow for a better analysis. In such a case, the following penalty
graph and matriz would be suitable:

ABC \ GCB
_ 4 A Ay
P= A= |:)\f )\22] ' (19)

Example 2 Consider data from a one-way factorial design where the factor is ordinal with
classes A, B, and C. For simplicity, we choose the same ridge penalty A for each class. Say
we have prior information that A is closer to B and B is closer to C than A is to C. The
fusion penalty on the pairs containing the intermediate level B might then be allowed to be
stronger. The following penalty graph and matriz are thus sensible:

A B
o2 S A As ac
P= (A \\)y A A= 1| ) A AB | - (11)
Aac Aac A A

Depending on the application, one might even omit the direct shrinkage between A and C by
fixing Aac = 0. A similar penalty scheme might also be relevant if one class of the factor is
an unknown miz of the remaining classes and one wishes to borrow statistical power from
such a class.

Example 3 In two-way or n-way factorial designs one might wish to retain similarities in
the ‘direction’ of each factor along with a factor-specific penalty. Consider, say, 3 oncoge-
nomic data sets (DS1, DSa, DS3) regarding ABC and GCB DLBCL cancer patients. This
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yields a total of G = 6 classes of data. One choice of penalization of this 2 by 3 design is
represented by the penalty graph and matriz below:

DS; DSy DSs DY 0 0 7

ADS ADS  AsT
ADS A ADs 0 Mgt 0
ADS  ADS A 0 0 AST

ADS

A=er 0 0 A os Aos| 1P
0 Xst 0 Aps A Aps
Aps 0 0 AsT Aps Aps A

This example would favor similarities (with the same force) only between pairs sharing a
common level in each factor. This finer control allows users, or the employed algorithm, to
penalize differences between data sets more (or less) strongly than differences between the
ABC and GCB sub-classes. This corresponds to not applying direct shrinkage of interaction
effects which is of interest in some situations.

While the penalty graph primarily serves as an intuitive overview, it does provide some
aid in the construction of the penalty matrix for multifactorial designs. For example, the
construction of the penalty matrix (12) in Example 3 corresponds to a Cartesian graph
product of two complete graphs similar to those given in (10) and (11). We state that P and
A should be chosen carefully in conjunction with the choice of target matrices. Ideally, only
strictly necessary penalization parameters (from the perspective of the desired analysis)
should be introduced. Each additional penalty introduced will increase the difficulty of
finding the optimal penalty values by increasing the dimension of the search-space.

3.2. Selection of Penalty Parameters

As the fs-penalty does not automatically induce sparsity in the estimate, it is natural to
seek loss efficiency. We then use cross-validation (CV) for penalty parameter selection due
to its relation to the minimization of the Kullback-Leibler divergence and its predictive
accuracy stemming from its data-driven nature. We randomly divide the data of each class
into k = 1,..., K disjoint subsets of approximately the same size. Previously, we have
defined Qg = Qg (A, {Qg’}g’ig) to be the precision matrix estimate of the gth class. Let
Q;k be the analogous estimate (with similar notational dependencies) for class g based on
all samples not in k. Also, let S’gC denote the sample covariance matrix for class g based on
the data in subset k and let n’gc denote the size of subset k in class g. The K-fold CV score
for our fused regularized precision estimate based on the fixed penalty A can then be given
as:

K G K
1 NN 1 .
KCV(A) = == > 1 > [ 10+ e(F8))| = =5 1 3 ch(6k:sh).
g=1k=1 g=1 k=1

One would then choose A* such that

A" = argmin KCV(A), subject to: A > 0 Adiag(A) > 0. (13)
A

12
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The least biased predictive accuracy can be obtained by choosing K = n, such that n’; =1.
This would give the fused version of leave-one-out CV (LOOCYV). Unfortunately, LOOCV
is computationally demanding for large p and/or large ny. We propose to select the penal-
ties by the computationally expensive LOOCYV only if adequate computational power is
available. In cases where it is not, we propose two alternatives.

Our first alternative is a special version of the LOOCV scheme that significantly re-
duces the computational cost. The special LOOCV (SLOOCYV) is computed much like the
LOOCYV. However, only the class estimate in the class of the omitted datum is updated.
More specifically, the SLOOCYV problem is given by:

A° = argmin SLOOCV(A), subject to: A > 0 Adiag(A) > 0, (14)
A
with
G ng
SLOOCV(A) = —— ZZ& (Q,7;Sh).
g 1i=1

The estimate ﬁ;Z in (14) is obtained by updating only flg using Proposition 1. For all
other ¢’ # g, ﬁ;,i = Qg. The motivation for the SLOOCYV is that a single observation in
a given class g does not exert heavy direct influence on the estimates in the other classes.
This way the number of fused ridge estimations for each given A and each given leave-
one-out sample is reduced from n, to G estimations. Our second and fastest alternative
is an approximation of the fused LOOCYV score. This approximation can be used as an
alternative to (S)LOOCV when the class sample sizes are relatively large (precisely the
scenario where LOOCYV is unfeasible). See Section 3 of the Supplementary Material for
detailed information on this approximation.

3.3. Choice of Target Matrices

The target matrices {Ty} can be used to encode prior information and their choice is highly
dependent on the application at hand. As they influence the efficacy as well as the amount
of bias of the estimate, it is of some importance to make a well-informed choice. Here, we
describe several options of increasing level of informativeness, showcasing the flexibility of
target specification.

The limited fused ridge problem in Price et al. (2015) corresponds to choosing the
common target Ty = T = 0. This can be considered the least informative target possible.
We generally argue against the use of the non positive definite target T = 0, as it implies
shrinking the class precision matrices towards the null matrix and thus towards infinite
variance.

In some situations one may wish to penalize the diagonal elements of the precision
matrices at a different rate than the off-diagonal elements. Specifying Ty = (Sy 0 I,)~!
would be equivalent to shrinking the precision estimate for class g towards a diagonal matrix
carrying the inverse variances of S, and, hence, (from the precision-perspective) letting the
diagonal elements of S, go unpenalized. Such a target can be scaled to give varying rates
of shrinkage for the (off-)diagonal elements. That is, one could specify 7,(Sy o I,)~! with
vg € [0, 00), although from an empirical perspective it would make sense to choose 4 € [0, 1].
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In the special case when T, = T for all g one could choose T = (Se0I,)"*. When choosing
v = 0 for all g, the common target Ty = T = 0 ensues.

In the non-fused setting, the consideration of a scalar target matrix T = al, for some o €
[0, 00) leads to a computational benefit stemming from the property of rotation equivariance
(van Wieringen and Peeters, 2016): Under such targets the ridge estimator only operates on
the eigenvalues of the sample covariance matrix. This benefit transfers to the fused setting
for the estimator described in Proposition 1. To see this let VgD(gg)V;F be the spectral
decomposition of S, with D(S,) denoting a diagonal matrix with the eigenvalues of S, on
the diagonal and where V, denotes the matrix that contains the corresponding eigenvectors
as columns. Naturally, the orthogonality of V, implies VgV;F = V;FVQ = I,. Now, note

that, if T, = a4I,, we can write Qg (A, {Qy }g2g) as:

1
— 1 _ _ 9 1/2 1 _ _
Vy { [Ang + Z(D(Sg) - Agang) ] + D) (D(Sg) - )‘gaglp) VgT'

Letting d(-);; denote the jth eigenvalue of the matrix terms in brackets we thus have that:

d [Qg (A, {Qg’}g’sﬁg)Lj = {\/S‘g + % [d(Sg)j5 — /\9%]2 + B [d(Sg)j5 — Agarg] } .

Proposition 4.7ii then implies that if A\gy < oo for all ¢’ # g, d [Qg (A, {Qg/}g/7§g):|  —ay
as A\gg — 00, for all j. Hence, using scalar target matrices implies shrinking the eigejzilvalues
of the class-specific estimated precision matrix to the central value coy. One may consider
T, = a4, with oy € [0,00) for each g. The rotation equivariance property dictates that
it is sensible to choose o, based on empirical information regarding the eigenvalues of S,.
One such choice could be the average of the reciprocals of the non-zero eigenvalues of S,. A
straightforward alternative would be to choose oy = [tr(S,)/p]~!. In the special case of (6)
where all a; = a the analogous choice would be a = [tr(Se)/p] ™. The limited fused ridge
problem in Price et al. (2015) corresponds to choosing a4 = 0 for all g, such that (again) a
common target T, = T = 0 is employed.

More informative targets would move beyond diagonal targets such as the scalar ma-
trix. An example would be the consideration of factor-specific targets for factorial designs.
Recalling Example 3, one might deem the data set factor to be a ‘nuisance factor’. Hence,
one might choose different targets Tgcp and Tapc based on training data or the pooled
estimates of the GCB and ABC samples, respectively. In general, the usage of pilot train-
ing data or (pathway) database information (or both) allows for the construction of target
matrices with higher specificity. We illustrate how to construct (topology-specific) targets
from database information in the DLBCL application of Section 6.

4. Fused Graphical Modeling

In this section we focus on the graphical interpretation of precision matrices. First, a
simple score test to assess the necessity of fusing is introduced (Section 4.1). Afterwards,
the well-known basics of graphical modeling are given, linking the support of a precision
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matrix to a conditional independence graph (Section 4.2). Next, a simple empirical Bayes
procedure for support determination is explained (Section 4.3). Last, we introduce several
simple metrics for the identification of commonalities and differences between two or more
conditional independence graphs (Section 4.4).

4.1. To Fuse or Not to Fuse

As a preliminary step to downstream modeling one might consider testing the hypothesis
of no class heterogeneity—and therefore the necessity of fusing—amongst the class-specific
precision matrices. Effectively, one then wishes to test the null-hypothesis Hy : €21 = ... =
Q. Under Hy an explicit estimator is available in which the fused penalty parameters play
no role, cf. Section 2.2 of the Supplementary Material. Here we suggest a score test (Bera
and Bilias, 2001) for the evaluation of Hy in conjunction with a way to generate its null
distribution in order to assess its observational extremity.

A score test is convenient as it only requires estimation under the null hypothesis,
allowing us to exploit the availability of an explicit estimator. The score statistic equals:

Q,=0Ho0

G oL,y SO\ (022, (S, aL({9,): (S,
U=—Z< ({2} { })) ( (R} })) ({2} {Se})

= 09y 00,090, 00y ’

where Q0 denotes the precision estimate under Hj given in equation (S4) of the Sup-
plementary Material, which holds for all classes g. The gradient can be considered in
vectorized form and is readily available from (25). The Hessian of the log-likelihood equals
0L/ (aﬂgﬁﬂ;) = —Q;l ® Q;l. For practical purposes of evaluating the score statistic,
we employ the identity (AT ® B)vec(C) = vec(BCA) which avoids the manipulation of
(p? x p?)-dimensional matrices. Hence, the test statistic U is computed by

where X, = ng{2[(Q)7! — S| — [(@70) 1 —§g] o T, }.

The null distribution of U can be generated by permutation of the class labels: one
permutes the class labels, followed by re-estimation of €2 under Hy and the re-calculation
of the test statistic. The observed test statistic (under Hy) U is obtained from the non-
permuted class labels and the regular fused estimator. The p-value is readily obtained
by comparing the observed test statistic U to the null distribution obtained from the test
statistic under permuted class labels. We note that the test is conditional on the choice of

Agg-

4.2. Graphical Modeling

A contemporary use for precision matrices is found in the reconstruction and analysis of
networks through graphical modeling. Graphical models merge probability distributions
of random vectors with graphs that express the conditional (in)dependencies between the
constituent random variables. In the fusion setting one might think that the class precisions
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share a (partly) common origin (conditional independence graph) to which fusion appeals.
We focus on class-specific graphs G, = (V, E,) with a finite set of vertices (or nodes) V and
set of edges ;. The vertices correspond to a collection of random variables and we consider
the same set V = {Y1,...,Y,} of cardinality p for all classes g. That is, we consider the
same p variables in all G classes. The edge set E, is a collection of pairs of distinct vertices
(Y},Y)) that are connected by an undirected edge and this collection may differ between
classes. In case we assume {Y7,...,Y,} ~ N,(0,3,) for all classes g we are considering
multiple Gaussian graphical models.

Conditional independence between a pair of variables in the Gaussian graphical model
corresponds to zero entries in the (class-specific) precision matrix. Let Qg denote a generic
estimate of the precision matrix in class g. Then the following relations hold for all pairs
{Y;, Yy} € V with j # 5"

Q)i =w? =0 = VLY |[V\{¥;,Yy}incassg < (V.)€ E,.
Hence, determining the (in)dependence structure of the variables for class g—or equivalently
the edge set F; of G;—amounts to determining the support of Qg.

4.3. Edge Selection

We stress that support determination may be skipped entirely as the estimated precision
matrices can be interpreted as complete (weighted) graphs. For more sparse graphical
representations we resort to support determination by a local false discovery rate (IFDR)
procedure (Efron et al., 2001) proposed by Schéfer and Strimmer (2005a). This procedure
assumes that the nonredundant off-diagonal entries of the partial correlation matrix

1
- . ~(g) ~ -2
(Pg)jjr = —W§?2 (wg-?)wg‘?})
follow a mixture distribution representing null and present edges. The null-distribution is
known to be a scaled beta-distribution (cf. Schifer and Strimmer, 2005b) which allows for
estimating the IFDR:

DR = (V3,7 ¢ By | (B ).

which gives the empirical posterior probability that the edge between Y; and Y is null
in class g conditional on the observed corresponding partial correlation. The analogous
probability that an edge is present can be obtained by considering 1 — ﬁD\R(ﬁ? See Efron
et al. (2001); Schéfer and Strimmer (2005a); van Wieringen and Peeters (2016) for further
details on the IFDR procedure. Our strategy will be to select for each class only those
edges for which 1 — mg‘? surpasses a certain threshold. Schéifer and Strimmer (2005a)
recommend, on the basis of the observation that the “majority of the non-null cases lie
well within the 0.2 FDR cutoff limits” (Efron, 2005), to select an edge to be present when
1-— m(.‘q.,) > .8. We will choose the cut-off for edge-presence somewhat more conservative
in our simulations and applications (see Sections 5 and 6). The two-step procedure of regu-
larization followed by subsequent support determination has the advantage that it enables
probabilistic statements about the inclusion (or exclusion) of edges.
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4.4. Common and Differential (Sub-)Networks

After estimation and sparsification of the class precision matrices the identification of com-
monalities and differences between the graphical estimates are of natural interest. Here we
consider some (summary) measures to aid such identifications. Assume in the following
that multiple graphical models have been identified by the sparsified estimates Q(l], e Q%
and that the corresponding graphs are denoted by Gi,...,Gg.

An obvious method of comparison is by pairwise graph differences or intersections. We
use the differential network Gg,\4, = (V, Eg, \ Ey,) between class g1 and g2 to provide an
overview of edges present in one class but not the other. The common network Gins =
(V,E1 N Ey) is composed of the edges present in both graphs. We also define the edge-
weighted total network of m < G graphs Gi,...,G, as the graph formed by the union
Giu-.um = (V, E1U- - -UE,,) where the weight w;; of the edge e;; is given by the cardinality
of the set {g € {1,...,m} : ;5 € E4}. More simply, Giu..um is determined by summing
the adjacency matrices of G; to G,,. Analogously, the signed edge-weighted total network
takes into account the stability of the sign of an edge over the classes by summing signed
adjacency matrices. Naturally, the classes can also be compared by one or more summary
statistics at node-, edge-, and network-level per class (cf. Newman, 2010).

We also propose the idea of ‘network rewiring’. Suppose an investigator is interested
in the specific interaction between genes A and B for classes g1 and go. The desire is to
characterize the dependency between genes A and B and determine the differences between
the two classes. To do so, we suggest using the decomposition of the covariance of A and B
into the individual contributions of all paths between A and B. A path z between A and
B of length t, in a graph for class g is, following Lauritzen (1996), defined to be a sequence
A =wy,...,v, = B of distinct vertices such that (v4_1,vq) € E4 for all d =1,...,¢,. The
possibility of the mentioned decomposition was shown by Jones and West (2005) and, in
terms of Qg = [wjj], can be stated as:

(€2))-p|

Cov(4, B) = Z (_1)tz+1wz4v1wvw2wv2v3 CWop, v, W, 1B |QO‘
g

2ZEZAB

;o (195)

where Z4p is the set of all paths between A and B and (Qg)ﬁ p denotes the matrix Qg with
rows and columns corresponding to the vertices of the path z removed. Each term of the
covariance decomposition in (15) can be interpreted as the flow of information through a
given path z between A and B in G,. Imagine performing this decomposition for A and B in
both le and ng' For each path, we can then identify whether it runs through the common
network Gy ng,, or uses the differential networks ggQ\gl,ggl\W unique to the classes. The
paths that pass through the differential networks can be thought of as a ‘rewiring’ between
the groups (in particular compared to the common network). In summary, the covariance
between a node pair can be separated into a component that is common and a component
that is differential (or rewired).

Example 4 Suppose we have the following two graphs for classes g1 = 1 and go = 2:

B (3 B—3
G =) Go =(4)
N
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and consider the covariance between node A and B. In Gy the covariance Cov(Ya,Yn) is
decomposed into contributions by the paths (A, B), (A,5,B), and (A,5,4, B). Similarly for
Ga, the contributions are from paths (A,5, B) and (A,5,4,3,B). Thus (A, 5, B) is the only
shared path. Depending on the size of the contributions we might conclude that network 1
has some ‘rewired pathways’ compared to the other. This method gives a concise overview of
the estimated interactions between two given genes, which genes mediate or moderate these
interactions, as well as how the interaction patterns differ across the classes. In turn this
might suggest candidate genes for perturbation or knock-down experiments.

5. Simulation Study

In this section we explore and measure the performance of the fused estimator and its
behavior in four different scenarios. Performance is measured primarily by the squared
Frobenius loss,

LY (25(8). Q) = [|€2(A) — 2|7

between the class precision estimate and the true population class precision matrix. How-
ever, the performance is also assessed in terms of the quadratic loss,

L) (9(A), Q) = || (A)2," ~ L|[3.

The risk defined as the expected loss associated with an estimator, say,
Ri{S(A)} = E[LY (€2,(A), 2,).

is robustly approximated by the median loss over a repeated number of simulations and
corresponding estimations.

We designed six simulation scenarios to explore the properties and performance of the
fused ridge estimator and alternatives. Scenario 1 evaluates the fused ridge estimator under
two choices of the penalty matrix, the non-fused ridge estimate applied individually to
the classes, and the non-fused ridge estimate using the pooled covariance matrix when
(la) Q1 = Q9 and (1b) Q1 # Q9. Scenario 2 evaluates the fused ridge estimator under
different choices of targets: T; = Ty = 0, T1 = Ty = al, with different choices of «, and
T, = T = Q. Scenario 3 evaluates the fused ridge estimator for varying network topologies
and degrees of class homogeneity. Specifically, for (3a) scale-free topology and (3b) small-
world topology, each with (3i) low class homogeneity and (3ii) high class homogeneity.
Scenario 4 investigates the fused estimator under non-equal class sample sizes. Scenario
5 compares the fused ridge estimator to the fused graphical lasso (Danaher et al., 2014)
estimator. Scenario 6 compares the fused ridge estimator to the Laplacian Shrinkage for
Inverse Covariance matrices from Heterogenous populations (LASICH; Saegusa and Shojaie,
2016) estimator and a Bayesian Multiple Gaussian Graphical Modeling (BMGGM; Peterson
et al., 2015) approach. Except for scenario 4, we make no distinction between the loss in
different classes. Except for scenario 1, we use penalty matrices of the form A = Mg +

Ar(Ja —1g).
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5.1. Scenario 1: Fusion Versus no Fusion

Scenario 1 explores the loss-efficiency of the fused estimate versus non-fused estimates as a
function of the class sample size n, for fixed p and hence for different p/n, ratios. Banded
population precision matrices are simulated from G = 2 classes. We set p = 100 and

k+1

mﬂ[‘j —J'| < K] (16)

(Qg)jj’ =

with k& non-zero off-diagonal bands. The sub-scenario (1la) ©; = €9 uses k = 15 bands
whereas (1b) €1 # €9 uses k = 15 bands for £ and k = 2 bands for Q5. Hence, identical
and very different population precision matrices are considered, respectively.

For ng, = 25,50, 100 the loss over 100 repeated runs was computed. In each run, the
optimal unrestricted penalty matrix A was determined by LOOCYV. The losses were com-
puted for (1i) the fused ridge estimator with an unrestricted penalty matrix, (1ii) the fused
ridge estimator with a restricted penalty matrix such that A\j; = Ago, (1iii) the regular
non-fused ridge estimator applied separately to each class, and (1iv) the regular non-fused
ridge estimator using the pooled estimate So. In all cases the targets T1 = To = a2l
were used with aey = p/tr(Ss). The risk and quartile losses for scenario 1 are seen in the
boxplots of Figure 1.

Generally, the unrestricted fused estimates are found to perform at least as well as the
(superior of the) non-fused estimates. This can be expected as the fused ridge estimate
might be regarded as an interpolation between using the non-fused ridge estimator on
the pooled data and within each class separately. Hence, the LOOCYV procedure is thus
able to capture and select the appropriate penalties both when the underlying population
matrices are very similar and when they are very dissimilar. In the case of differing class
population precision matrices, the restricted fused ridge estimator (that uses the single ridge
penalty A1; = Ag2) performs somewhat intermediately, indicating again the added value of
the flexible penalty setup. It is unsurprising that the non-fused estimate using the pooled
covariance matrix is superior in scenario (1b), where Q1 = Qy, as it is the explicit estimator
in this scenario, cf. Section 2.2 of the Supplementary Material.

5.2. Scenario 2: Target Versus no Target

Scenario 2 investigates the added value of the targeted approach to fused precision matrix
estimation compared to that of setting Ty = 0 which reduces to the special-case considered
by Price et al. (2015). We simulated data sets with G = 2 classes and p = 50 variables
from three topologies: (2i) banded precision matrices (as given in Equation 16) with k = 25
bands; (2ii) precision matrices representing star-graphs, and (2iii) precision matrices based
on Erdos-Rényi random graph games (Erdés and Rényi, 1959). For topology (2ii) the first
variable represents the internal (hub) node and the values of the off-diagonal entries (1, j)
and (j,1) taper-off by 1/(5 + 1). For (2iii) each edge is present with probability 1/p and
non-zero off-diagonal values are taken to be .25. Performance was evaluated using (2a) T =
Ty =0, (2b) Ty = aulp, (2¢) Ty = ae2ly, and (2d) the spot-on target T = Ty = Q. We
set ae = D j(S.)j_jl] /p and s is defined as above. Risks were estimated by the losses for
each class for each of ny = 25,50,100 class sample sizes over 100 simulation repetitions.
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Figure 1: Results for simulation Scenario 1, depicting the losses against the class samples

size for different ridge estimators under unequal and equal class population ma-
trices. G = 2 classes are considered with banded population precision matrices
of variable-dimension p = 100. The left-hand panels represent the ;1 # Qs sce-
nario. The right-hand panels represent the {21 = s scenario. The upper panels
depict the results under the Frobenius loss. The lower panels depict the results
under the quadratic loss. The considered class sample sizes are ng € {25,50,100}
and the losses were computed for the fused ridge estimator with an unrestricted
penalty matrix, the fused ridge estimator with a restricted penalty matrix such
that the ridge penalty is shared across classes, the regular non-fused ridge esti-
mator applied separately to each class, and the regular non-fused ridge estimator
using the pooled estimate S,. In all cases T1 = Ty = ae2l, with ae2 = p/ tr(S.),
i.e., a2 represents the inverse of the averaged eigenvalues of S,. Note that the
boxplots in the figure (for each class sample size ng) are ordered according to the
legend (given at the top of the image).
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The optimal penalties where determined by LOOCV with penalty matrices of the form
A= Mg+ )\f(JG —Ig).

The results for the random-graph topology are shown in the boxplots in Figure 2. The
results for the star-graph and banded matrix topologies can be found in Section 4 of the
Supplementary Material. As expected, the spot-on target shows superior performance in
terms of loss in all cases. Diagonal targets also improve estimation efficiency relative to
the null target. This latter observation holds for all considered topologies and both types
of diagonal target, across the considered sample sizes and loss types. Only in scenario (2i)
under the Frobenius loss is the null target preferred over the diagonal targets. Perhaps this
is not surprising: For the Frobenius norm the slowest rate of convergence of the estimator
comes from the diagonal entries (Rothman, 2012; Maurya, 2016). From the losses as defined
above we get that, in a sense, the Frobenius norm emphasizes proportionality, while the
quadratic norm emphasizes the diagonal. The situation in scenario (2i) is actually quite
dense: A banded matrix with 25 bands. As the Frobenius loss emphasizes proportionality
and is slow to converge in terms of diagonal entries it will then favor T = 0. Because when
emphasizing proportionality, the T = 0 target will keep the estimate longer in a state that
resembles a matrix with many bands.

Hence, we conclude that, in general, informative targets are preferred over null targets,
even when the informative target is as simple as a scalar matrix (given that the scalar is, in
a sense, well-chosen). Overall, the results suggests that well-informed choices of the target
can greatly improve the estimation and that the algorithm will put emphasis on the target
if it reflects the truth. Such behavior is also seen analytically in the ridge estimator of
Schéfer and Strimmer (2005a) inferred from their closed expression of the optimal penalty.
Such behavior also corresponds to the observation that positive definite target matrices will
tend to preserve data signal (van Wieringen and Peeters, 2016).

As the null-target scenario corresponds to the case of Price et al. (2015), we performed
a secondary timing benchmark of their accompanying RidgeFusion package compared to
rags2ridges. We evaluated estimation time of each package on a single simulated data
set with p = 50, G = 2, and ny = ny = 10 using a banded matrix as before. The
average estimation times over 100 model fits where 9.3 and 25.4 milliseconds for packages
rags2ridges and RidgeFusion, respectively. This approximates a factor 2.74 speed-up for
a single model fit. The timing was done using the package microbenchmark (Mersmann,
2014) and the estimates from each package were in agreement within expected numerical
precision.

5.3. Scenario 3: Varying Topology and Class (Dis)Similarity

Scenario 3 investigates the fused estimator with G = 3 classes for (3i) high and (3ii) low class
homogeneity and two different latent random graph topologies on p = 100 variables. The
topologies are the (3a) ‘small-world’ and the (3b) ‘scale-free’ topology generated by Watts-
Strogatz and Barabéasi graph games, respectively (Watts and Strogatz, 1998; Barabasi and
Albert, 1999). The former generates topologies where all node degrees are similar while
the latter game generates networks with (few) highly connected hubs. From the generated
topology, we construct a latent precision matrix ¥ with diagonal elements set to 1 and the
non-zero off-diagonal entries dictated by the network topology set to 0.1.
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Figure 2: Results for simulation Scenario 2iii, depicting the comparison of the targeted

versus the un-targeted approach in the random-graph population setting. We
consider G = 2 classes with the population precision matrix €2 for each class
being a Erdos-Rényi random graph matrix with p = 50. Each edge is present
with probability 1/p. Non-zero off-diagonal values are taken to be .25. The
upper panel depicts the results under the Frobenius loss while the lower panel
depicts the results under the quadratic loss. The considered class sample sizes are
ng € {25,50,100}. The target matrix is taken to be equal over classes, i.e., T =
Ty. The un-targeted situation is represented by T, = 0. The most informative
target is the spot-on target Ty = €2. Two diagonal targets are also considered:
Ty = a.ly, with ae = [Zj(S.);jl]/p; and Ty = ael,, with cex = p/tr(S.).
Hence, o, represents the average of the inverse marginal variances of S, and e
represents the inverse of the averaged eigenvalues of S,. Note that the boxplots
in the figure (for each class sample size ny) are ordered according to the legend
(given at the top of the image).

The two topologies are motivated as they imitate many real phenomena and processes.
Small-world topologies approximate systems such as power grids, the neural network of the
worm C. elegans, and the social networks of film actors (Watts and Strogatz, 1998; Mei et al.,
2011). Conversely, scale-free topologies approximate many social networks, protein-protein
interaction networks, airline networks, the world wide web, and the internet (Barabési and
Albert, 1999; Barabasi, 2009).
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We control the inter-class homogeneity using a latent inverse Wishart distribution for
each class covariance matrix as considered by Bilgrau et al. (2018). That is, we let

zgzﬂg—lpr—l((u—p—nq’—l,u), v>p+1 (17)

where W, 1(®, v) denotes an inverse Wishart distribution with scale matrix ® and v degrees
of freedom. The parametrization implies the expected value E[X,] = E[QQ_I] =& ! and
thus ® defines the latent expected topology. We simulate from a multivariate normal
distribution as before conditional on the realized covariance X,. In (17), the parameter v
controls the inter-class homogeneity. Large v imply that €; ~ Q5 ~ 23 and thus a large
class homogeneity. Small values of v — (p + 1) imply large heterogeneity.

For the simulations, we chose (i) ¥ = 200 and (ii) ¥ = 2000. Again we fitted the model
using both the zero target as well as the scalar matrix target described above using the
reciprocal value of the mean eigenvalue, i.e., T = Ty = T3 = oI, for both a = 0 and
a = ae2 = p/tr(Ss). The estimation was repeated 100 times for each combination of
high/low class similarity, network topology, choice of target, and class sample-size n; =
ne = n3g = 25,50, 100. Panels A and B of Figure 3 show box-plots of the results.

First, the loss is seen to be dependent on the network topology, irrespective of the
loss function. Second, as expected, the loss is strongly influenced by the degree of class
(dis)similarity where a higher homogeneity yields a lower loss. Intuitively, this makes sense
as the estimator can borrow strength across the classes and effectively increase the degrees
of freedom in each class. Third, the targeted approach has a superior loss in all cases with
a high class homogeneity and thus the gain in loss-efficiency is greater for the targeted
approach. For low class homogeneity, the targeted approach performs comparatively to
the zero target with respect to the Frobenius loss while it is seemingly better in terms of
quadratic loss. Measured by quadratic loss, the targeted approach nearly always outper-
forms the zero target.

5.4. Scenario 4: Unequal Class Sizes

Scenario 4 explores the fused estimator under unequal class sample sizes. We simulated
data from banded precision matrices with k& = 8 non-zero off-diagonal bands, G = 2, and
p = 100. The number of samples in class 2 was fixed at no = 30 while the number of
samples in class 1 were varied: n; = 25,50,100. The target matrices are specified such
that Ty = T2 = e2l,. The results of the simulation are shown in Figure 4. Note that we
consider the Frobenius and quadratic loss within each class separately here.

Not surprisingly, the fused estimator performs better (for both classes) when ne in-
creases. Perhaps more surprising: there seems to be no substantial difference in loss for
groups ni and neo, suggesting that the fusion indeed borrows strength from the larger class.
A loss difference is only visible in the most extreme case where n; = 100 and no = 30. The
relative difference however is not considered large.

5.5. Scenario 5: Comparison to the Fused Graphical Lasso

Scenario 5 compares the targeted fused ridge estimator with the fused graphical lasso esti-
mator (Danaher et al., 2014). We consider G = 2 classes with (initially) €2; = Q2. We then
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Figure 3: Results for simulation Scenario 3. Panel A depicts the boxplots of Frobenius
losses for each combination of network topology, degree of class similarity, choice
of target, and class sample-size. Panel B depicts the boxplots of quadratic losses
for each combination of network topology, degree of class similarity, choice of
target, and class sample-size. Note that the boxplots in the figure (for each class
sample size ngy) are ordered according to the legend (given at the top of the image).

simulated data sets with p = 50 variables from two topologies: (i) random topology gener-
ated by the Erdos-Rényi random graph game (Erdés and Rényi, 1959), and (ii) scale-free
topology generated by the Barabdasi graph game (Barabasi and Albert, 1999). In this sim-
ulation the dimension p is chosen to be 50 in order to keep computation times appreciable
(the lasso can be slow in dense situations). For each topology, the density (parameter) is
varied. For the Erdos-Rényi random graph game we consider edge presence with probability
P € {1/p,.25,.35}, indicating increasingly dense topologies. For the Barabdsi graph game
we consider linear preferential attachment and the number of edges to add in each time
step #F € {1,3,5}. In each time-step of the Barabdasi graph game algorithm (Barabdsi
& Albert, 1999), #FE edges are added. Hence, higher values of #FE result in more dense
topologies. Under both considered topologies the off-diagonal nonzero elements are chosen
to be of value .15. The fused graphical lasso is initiated such that the diagonal elements
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Figure 4: Results for simulation Scenario 4: Depicting the loss as a function of sample
size of class 1 with fixed sample size for class 2. The upper panel depicts the
results under the Frobenius loss while the lower panel depicts the results under
the quadratic loss.

(for each class) are preserved. For the fuse ridge we choose T = oI, with ay = p/ tr(Sy).
Hence, the target employed by the fused lasso is most likely advantageous with respect to
loss. For each setting we consider a 2-dimensional grid of ridge and fusion penalties.

For the fused ridge we consider the ridge-penalty A € [.01,1000] and the fusion-penalty
Ar € [1,10,000]. For the fused graphical lasso we consider (abusing notation somewhat for
notational brevity) the lasso-penalty A € [.01,100] and the fusion-penalty A; € [.1,100]. The
penalty-grids are probed by taking 30 log;y-equidistant steps in each direction. Risks are
then estimated—for each (A, Ay)-combination nested within each combination of topology
and corresponding density-parameter—by the median losses aggregated over the classes for
each of ny, = 25,50 class sample sizes over 100 simulation repetitions. Hence, we obtain risk
surfaces over the penalty-grid.

Figure 5, and Figures S3, and S4 (Section 5 of the Supplementary Material) visualize
the results for the Barabdsi graph game with ny, = 25 and with #F = 1, #F = 3, and
#E = 5, respectively. These figures then give the Risk per (A, Af)-combination. The blue
box in each figure indicates the (A, Ay)-combination that achieves the lowest Risk. We make
several observations on the basis of these figures. The first is that the risk surface of the
fused ridge estimator is smoother than the analogous surface of the fused graphical lasso.
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This is to be expected as the ridge estimator provides proportional shrinkage. Second,
as the density of the topology increases, the ridge-penalty for which the lowest Risk is
achieved expectedly decreases. For very sparse situations, the ridge-penalty is large as it
will tend to suppress signal to express sparsity. Third, the fused-ridge-penalty (for which
the lowest Risk is achieved) indeed expresses that the class-precision matrices stem from
the same population. Last, irrespective of the sparsity of the setting, we are able to find
combinations of penalty-values that lead the fused ridge estimator to achieve lower Risk
than the fused graphical lasso estimator. This last observation is especially of note since
we move through the penalty-space of the fused ridge in a more coarse-grained manner,
which is advantageous to the fused graphical lasso. Moreover, this last observation also
holds irrespective of the chosen loss-type (Frobenius or quadratic). Similar behavior is seen
under ngy = 50 (Supplementary Figures S5-S7) and in the Erdds-Rényi random graph game
setting (Supplementary Figures S8-S13). These results are in line with observations made
by van Wieringen and Peeters (2016) in the non-fused situation.

We also consider an analogous simulation setting under class differences. Again Erdos-
Rényi and Barabési random graph games were considered of the same variable-dimension.
But now the class 1 and class 2 data are not drawn from the same population. In the
Erdos-Rényi game the probability of edge presence was taken to be 1/p for class 1 and
.25 for class 2. In the Barabési game the number of edges to add in each time step was
taken to be 1 for class 1 and 3 for class 2. Hence, in both settings the topology for class
1 was relatively sparse while the topology for class 2 was more dense. For the fused ridge
we consider the ridge-penalty A € [.01,1000] and the fusion-penalty Ay € [.1,1000]. For
the fused graphical lasso we consider the lasso-penalty A € [.01,100] and the fusion-penalty
Ar € [.1,100]. The class sample size ng, was set to 25. Risks are then estimated—for
each (A, A\y)-combination nested within setting—by the median losses aggregated over the
classes over 100 simulation repetitions. Figure 6 contains the results of this exercise for the
Barabasi game. As expected, the fused-ridge penalty is relatively low, indicating that the
class-precision matrices are indeed considered to stem from different populations. Moreover,
we are again able to find combinations of penalty-values that lead the fused ridge estimator
to achieve lower Risk than the fused graphical lasso estimator. Again, this observation holds
irrespective of the chosen loss-type (Frobenius or quadratic). And, again, similar behavior
is seen in the Erdés-Rényi graph game setting (Supplementary Figure S14).

5.6. Scenario 6: Comparison to LASICH and BMGGM

The LASICH approach of Saegusa and Shojaie (2016) and the BMGGM approach of Pe-
terson et al. (2015) can be seen as flexible generalizations of the fused graphical lasso.
These approaches allow for pair-specific similarities (between precision matrices) to be es-
timated from the data. LASICH uses a Laplacian shrinkage approach while BMGGM uses
a hierarchical Bayesian formulation that combines a Markov Random Field prior with a
spike-and-slab prior. Hence, these approaches thus also imply edge selection. Scenario 6
then compares the targeted fused ridge estimator, as well as its coupling with post-hoc
support determination, to the LASICH and BMGGM approaches.

We consider G = 3 classes. We then simulated data sets with p = 20 variables from ran-
dom topologies generated by the Erdos-Rényi random graph game (Erdds and Rényi, 1959).
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Figure 5: Comparison of the fused graphical lasso and the fused ridge estimator in the
Barabdsi graph game population setting with ny, = 25 and where the number
of edges to add in each time step was taken to be 1. Each square on the two-
dimensional grid represents a (A, Ay)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue square
(and corresponding number) indicate the lowest Risk achieved on the grid. Left-
hand panels give the results for the fused graphical lasso. Right-hand panels give
the results for the fused ridge estimator. Upper panels express the Risk surface
under Frobenius loss. Lower panels express the Risk surface under quadratic loss.

In this simulation the dimension p is chosen to be 20 in order to keep computation times
appreciable. The computation times of the full Bayesian BMGGM approach can become
prohibitive for larger p. Note that p = 20 concurs with the node-dimension in simula-
tions performed by Peterson et al. (2015). The density (parameter) is again varied. For the
Erdos-Rényi random graph game we consider edge presence with probability P € {1/p, .35},
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Figure 6: Comparison of the fused graphical lasso and the fused ridge estimator in the
Barabdsi graph game population setting with n, = 25 under class dissimilarity.
The the number of edges to add in each time step was taken to be 1 for class 1
and 3 for class 2. Each square on the two-dimensional grid represents a (A, Af)-
combination. The number in each square represents the estimated Risk for the
corresponding combination. The blue square (and corresponding number) indi-
cate the lowest Risk achieved on the grid. Left-hand panels give the results for
the fused graphical lasso. Right-hand panels give the results for the fused ridge
estimator. Upper panels express the Risk surface under Frobenius loss. Lower
panels express the Risk surface under quadratic loss.

indicating relatively sparse and relatively dense topologies, respectively. Moreover, for each
setting of edge presence, we consider (i) Q1 = Qo = Q3 and (i) 2; # Qy # Q3. For
the setting in which the class precisions are equal the Erdés-Rényi game is run once and
the resulting random graph is taken to be the population precision for all classes. For the
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setting in which the class precisions are unequal the Erdos-Rényi game is run thrice and
each resulting random graph is taken to be the population precision for one of the classes.
The edge presence and class similarity settings then define four sub-scenarios: (a) sparse
equal class precisions, (b) dense equal class precisions, (c¢) sparse unequal class precisions,
and (d) dense unequal class precisions. The sample size for each class was taken to be
ng = 15. In all sub-scenarios the off-diagonal nonzero elements are chosen to be of value
.15. For each estimation approach the estimation was repeated 50 times for each combi-
nation of edge presence probability and class similarity. We detail estimation specifics and
assessment criteria below.

For the fused ridge approach we choose Ty = g4I, with ay = p/tr(S,). Moreover,
the optimal penalties were determined by LOOCYV. Edge selection was performed using
the IFDR procedure of Section 4.3. More specifically, an edge in class g was selected if
1—@%? > .9. For the LASICH approach the p; and py parameters are probed, analogous
to the simulation in Saegusa and Shojaie (2016), over a 2-dimensional grid ranging, for both
dimensions, from 1 to 15. This takes note of the fact that LASICH performs well under
relatively large values of the p parameters (Saegusa and Shojaie, 2016). The performance of
LASICH was then assessed for that combination of p parameters for which the performance
was optimal (in terms of accuracy). The BMGMM approach was used as in Peterson et al.
(2015). The joint estimation option was taken with 30,000 MCMC iterations of which
the first 10,000 were discarded as burn-in. For each class those edges were selected whose
marginal posterior probability of inclusion > .5.

The approaches are assessed with respect to Frobenius and quadratic loss, accu-
racy, as well as runtimes. Accuracy, in terms of graph retrieval, is determined as
(TP + TN)/(TP + TN 4 FP + FN), where TP represents the true positives, TN represents
the true negatives, FP represents the false positives, and FN represents the false nega-
tives (all in terms of edges). Runtimes for the methods were recorded in seconds for each
simulation.

Figure 7 and Figure S15 (Section 6 of the Supplementary Material) visualize the results.
We make several observations on the basis of these figures. The loss (upper panels Figure
7) for all methods is higher for dense compared to sparse settings. The fused ridge and
the LASICH approaches are competitive in terms of loss. In terms of loss ranking: fused
ridge slightly outperforms LASICH whom both outperform BMGGM. As the class sample
sizes are quite low the model likelihood is unlikely to dominate the prior information,
resulting in higher loss for the BMGGM approach. These observations on loss hold for
both the Frobenius and the quadratic loss. In addition we see, with regard to accuracy
of graph retrieval (lower-left panel Figure 7), that the fused graphical ridge and LASICH
approaches are on a par, both outperforming the BMGGM approach in all sub-scenarios.
The accuracy performance of all approaches is lower for the dense situations compared to
the sparse situations. For the fused graphical ridge approach this can (at least in part)
be attributed to the stringency of the IFDR threshold used for edge-retention. A stringent
threshold might be very suited for sparse graphs, but as the density of the true graph rises
it might become too stringent. In all, post-hoc edge selection seems a viable option for
graph inferral. However, in balancing graph density and stringency of thresholding it would
be beneficial if one has some a priori information on the density of the system that is under
study. The lower-right panel of Figure 7 visualizes the runtimes over all sub-scenarios.

29



BILGRAU & PEETERS ET AL.

We see that the runtimes of the BMGGM approach become prohibitive when p would get
larger. The LASICH approach is much faster and the fused ridge approach is the fastest.
These observations on runtimes also hold for the separate sub-scenarios (see Supplementary
Figure S15).

Based on the observations, we make the following recommendations. There seems to be
some merit in having probabilistic control over edge selection, given the adequate perfor-
mance of both the fused ridge and BMGGM approaches in terms of accuracy. BMGGM
might then be the method of choice when one emphasizes posterior inference in a situa-
tion where p is of moderate dimension. However, BMGGM does not seem suited for fast
exploration and large feature-dimensions. For larger feature-dimensions LASICH and the
fused ridge have the computational upper hand over BMGGM. LASICH should then be
preferred when class-membership is unknown. LASICH can, when this is the case, infer
class-membership based on hierarchical clustering. However, when one has a good idea of
class-membership and when one emphasizes both loss and accuracy, we recommend usage
of the (computationally efficient) proposed fused (graphical) ridge approach.

6. Applications

Lymphoma refers to a group of cancers that originate in specific cells of the immune system
such as white blood T- or B-cells. Approximately 90% of all lymphoma cases are non-
Hodgkin’s lymphomas—a diverse group of blood cancers excluding Hodgkin’s disease—
of which the aggressive diffuse large B-cell lymphomas (DLBCL) constitutes the largest
subgroup (The Non-Hodgkin’s Lymphoma Classification Project, 1997). We showcase the
usage of the fused ridge estimator through two analyzes of DLBCL data.

In DLBCL, there exists at least two major genetic subtypes of tumors named after
their similarities in genetic expression with activated B-cells (ABC) and germinal centre
B-cells (GCB). A third umbrella class, usually designated as Type III, contains tumors that
cannot be classified as being either of the ABC or GCB subtype. Patients with tumors
of GCB class show a favorable clinical prognosis compared to that of ABC. Even though
the genetic subtypes have been known for more than a decade (Alizadeh et al., 2000) and
despite the appearance of refinements to the DLBCL classification system (Dybkaer et al.,
2015), DLBCL is still treated as a singular disease in daily clinical practice and the first
differentiated treatment regimens have only recently started to appear in clinical trials
(Ruan et al., 2011; Nowakowski et al., 2015). Many known phenotypic differences between
ABC and GCB are associative, which might underline the translational inertia. Hence, the
biological underpinnings and functional differences between ABC and GCB are of central
interest and the motivation for the analyzes below.

Incorrect regulation of the NF-xB signaling pathway, among other things, is responsi-
ble for control of cell survival, and has been linked to cancer. This pathway has certain
known drivers of deregulation. Aberrant interferon S production due to recurrent oncogenic
mutations in the central MYDS88 gene interferes with cell cycle arrest and apoptosis (Yang
et al., 2012). It also well-known that BCL2, another member of the NF-xB pathway, is
deregulated in DLBCL (Schuetz et al., 2012). Moreover, a deregulated NF-xB pathway is
a key hallmark distinguishing the poor prognostic ABC subclass from the good prognostic
GCB subclass of DLBCL (Roschewski et al., 2014). Our illustrative analyzes thus focus
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Figure 7: Results for simulation Scenario 6, depicting the comparison of the fused ridge
estimator with the LASICH and BMGGM approaches. The upper panels depict
the Frobenius loss (left-hand panel) and the quadratic loss (right-hand panel)
for each of the four sub-scenarios. The lower-left panel depicts the accuracy
results for each of the four sub-scenarios. The lower-right panel visualizes the
runtimes over all sub-scenarios. Note that the y-axis for the lower-right panel has
a logarithmic scale. The printed numbers above each boxplot then represent the
median runtime for the respective method over all sub-scenarios.
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on the functional differences between ABC and GCB in relation to the NF-xB pathway.
Section 6.1 investigates the DLBCL classes in the context of a single data set on the NF-xB
signalling pathway. Section 6.2 analyzes multiple DLBCL NF-xB data sets with a focus
on finding common motifs and motif differences in network representations of pathway-
deregulation. These analyzes show the value of a fusion approach to integration. In all
analyzes we take the NF-xB pathway and its constituent genes to be defined by the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa and Goto, 2000).

6.1. Nonintegrative Analysis of DLBCL Subclasses

We first analyze the data from Dybkeer et al. (2015), consisting of 89 DLBCL tumor samples.
These samples were RMA-normalized using custom brainarray chip definition files (CDF)
(Dai et al., 2005) and the R-package affy (Gautier et al., 2004). This preprocessing used
Entrez gene identifiers (EID) by the National Center for Biotechnology Information (NCBI),
which are also used by KEGG. The usage of custom CDFs avoids the mapping problems
between Affymetrix probeset IDs and KEGG. Moreover, the custom CDFs can increase the
robustness and precision of the expression estimates (Lu and Zhang, 2006; Sandberg and
Larsson, 2007). The RMA-preprocessing yielded 19,764 EIDs. Subsequently, the features
were reduced to the available 84 out of the 95 EIDs present in the KEGG NF-xB pathway.
The samples were then partitioned, using the DLBCL automatic classifier (DAC) by Care
et al. (2013), into the three classes ABC (n; = 31), III (n2 = 13), and GCB (n3 = 45), and
gene-wise centered to have zero mean within each class.

The analysis was performed with the following settings. Target matrices for the groups
were chosen to be scalar matrices with the scalar determined by the inverse of the average
eigenvalue of the corresponding sample class covariance matrix, i.e.:

p
b ( g).

These targets translate to a class-scaled ‘prior’ of conditional independence for all genes
in NF-kB. The optimal penalties were determined by LOOCYV using the penalty matrix
and graph given in (18). Note that the penalty setup bears resemblance to Example 2.
Differing class-specific ridge penalties were allowed because of considerable differences in
class sample size. Direct shrinkage between ABC and GCB was disabled by fixing the
corresponding pair-fusion penalty to zero. The remaining fusion penalties were free to be
estimated. Usage of the Nelder-Mead optimization procedure then resulted in the optimal
values given on the right-hand side of (18) below:

Tasc = aql,, T = aoly, Tgos = asl,, where o4 =

ABC Typelll GCB A1 Az O 2 1.5x 1073 0 ABC
A" = [A12 A2 Aes| = |15x107° 2.7 2x107%| III
Ao Aas 0 Doz a3 0 2 x 1073 2.3 GCB

(18)

The ridge penalties of classes ABC and GCB are seen to be comparable in size. The small
size of the Type III class leads to a relatively larger penalty to ensure a well-conditioned and
stable estimate. The estimated fusion penalties are all relatively small, implying that heavy
fusion is undesirable due to class-differences. The three class-specific precision matrices
were estimated under A* and subsequently scaled to partial correlation matrices. Panels
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Figure 8: Top: Heat maps and color key of the partial correlation matrices for the ABC
(panel A), III (panel B), and GCB (panel C) classes in the NF-xB signaling
pathway on the Dybkeer et al. (2015) data. Bottom: Graphs corresponding to
the sparsified precision matrices for the classes above. Red and blue edges corre-
spond to positive and negative partial correlations, respectively. Far right-panel:
EID key and corresponding Human Genome Organization (HUGO) Gene Nomen-
clature Committee (HGNC) curated gene names of the NF-xB signaling pathway
genes. Genes that are connected in panels D-F are shown bold.

A—C of Figure 8 visualize these partial correlation matrices. In general, the ABC and GCB
classes seem to carry more signal in both the negative and positive range vis-a-vis the Type
IIT class.

Post-hoc support determination was carried out on the partial correlation matrices using
the class-wise IFDR approach of Section 4.3. The 1 — IFDR threshold was chosen conser-
vatively to 0.99, selecting 39, 85, 34 edges for classes ABC, III, GCB, respectively. The
relatively high number of edges selected for the Type III class is (at least partly) due to the
difficulty of determining the mixture distribution mentioned in Section 4.3 when the overall
partial correlation signal is relatively flat. Panels D-E of Figure 8 then show the conditional
independence graphs corresponding to the sparsified partial correlation matrices. We note
that a single connected component is identified in each class, suggesting, at least for the
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ABC 111 GCB

EID Index Degree Betw. Degree Betw. Degree Betw.
CCL21 6366 77 9(57,47) 202.0 17(97,87) 297.00 4(37,17) 106
CXCLS8 3576 38 5(27,37)  126.0 12 (47,87)  234.00 4(17,37) 56
CCL19 6363 78 4(47,07)  120.0 10(67,47)  91.70 6(67,07) 230
LTA 4049 80 5(37,27) 143.0 10 (67,47) 195.00 3(3%,07) 56
CXCL12 6387 40 3(2t,17) 842 12(5%,77) 187.00 2(2%,07) 27
CXCL2 2920 76 3(3%,07) 61.0 11 (57,67) 196.00 3(27,17) 53
LTB 4050 81 4(3%,17) 85.5 5(37,27) 4.24 6(3%,37) 98
CD14 929 51 3(21,17) 20.2 6(37,37) 25.90 3(2F,17) 32
CCL4 6351 74 2(1t,17) 5.0 8(57,37)  118.00 2(1,17) 4
ZAPT0 7535 48 3(27,17) 60.0 5(4%,17) 50.70 3(2F,17) 75
CCL13 6357 39 4(3T,17)  119.0 5(3%,27) 19.70 1(17,07) 0
TNFSF11 8600 42 54%t,17)  160.0 2(1,17) 0.00 3(2%,17) 55
TNF 7124 16 1(1%,07) 0.0 4(2F,27) 1.68 3(3%,07) 24
LAT 27040 49 2(27,07) 0.0 4(4%,07) 15.80 2(2%,07) 0
LCK 3932 62 2(0%,27) 310 3(3%,07) 10.00 3(2%,17) 64

Table 1: The most central genes, their EID, and their plot index. For each class and node,
the degree (with the number of positive and negative edges connected to that node
in parentheses) and the betweenness centrality is shown. Only the 15 genes with
the highest degrees summed over each class are shown.

ABC and GCB classes, a genuine biological signal. A secondary supporting overview is
provided in Table 1.

Table 1 gives the most central genes in the graphs of Panels D-E by two measures of
node centrality: degree and betweenness. The node degree indicates the number of edges
incident upon a particular node. The betweenness centrality indicates in how many shortest
paths between vertex pairs a particular node acts as an intermediate vertex. Both measures
are proxies for the importance of a feature. See, e.g., Newman (2010) for an overview of
these and other centrality measures. It is seen that the CCL, CXCL, and TNF gene families
are well-represented as central and connected nodes across all classes. The gene CCL21 is
very central in classes ABC and III, but less so in the GCB class. From Panels D-E of
Figure 8 it is seen that BCL2 and BCL2A1 are only connected in the non-ABC classes.
Contrary to expectation, MYDS88 is disconnected in all graphs. The genes ZAP70, LAT,
and LCK found in Figure 8 and Table 1 are well-known T-cell specific genes involved in the
initial T-cell receptor-mediated activation of NF-xB in T-cells (Bidere et al., 2009). From
the differences in connectivity of these genes, different abundances of activated T-cells or
different NF-xB activation programs for ABC/GCB might be hypothesized.

6.2. Integrative DLBCL Analysis

We now expand the analysis of the previous section to show the advantages of integration
by fusion. A large number of DLBCL gene expression profile (GEP) data sets is freely
available at the NCBI Gene Expression Omnibus (GEO) website (Barrett et al., 2013). We
obtained 11 large-scale DLBCL data sets whose GEO-accession numbers (based on various
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ABC Type 111 GBC
L g Ng g Ny 2Ny
Pilot data
GSE11318 74 71 27 172
Data set
GSEb56315 1 31 2 13 3 45 89
GSE19246 1 51 5 30 6 96 177
GSE12195 7 40 8 18 9 78 136
GSE22895 10 31 11 21 12 49 101
GSE31312 13 146 14 97 15 224 467
GSE10846.CHOP 16 64 17 28 18 89 181
GSE10846.RCHOP 19 75 20 42 21 116 233
GSE34171.hgul33plus2 22 23 23 15 24 52 90
GSE34171.hgul33AplusB 25 18 26 17 27 43 78
GSE22470 28 86 29 43 30 142 271
GSE4475 31 73 32 20 33 128 221
> ong 638 344 1062 2044

Table 2: Overview of data sets, the defined classes, and the number of samples. In
GSE31312, 28 samples were not classified with the DAC due to technical issues
and hence do not appear in this table. In the pilot study GSE11318, 31 samples
were primary mediastinal B-cell lymphoma and left out. Note also that the pilot
data set GSE11318 was not classified by the DAC.

Affymetrix microarray platforms) can be found in the first column of Table 2. One of
the sets, with GEO-accession number GSE11318, is treated as a pilot/training data set
for the construction of target matrices (see below). The GSE10846 set is composed of
two distinct data sets corresponding to two treatment regimens (R-CHOP and CHOP) as
well as different time-periods of study. Likewise, GSE34171 is composed of three data sets
corresponding to the respective microarray platforms used: HG-U133A, HG-U133B, and
HG-U133 plus 2.0. As the samples on HG-U133A and HG-U133B were paired and run on
both platforms, the (overlapping) features were averaged to form a single virtual microarray
comparable to that of HG-U133 plus 2.0. Note that the Dybkaer et al. (2015) data used in
Section 6.1 is part of the total batch under GEO-accession number GSE56315. The sample
sizes for the individual data sets vary in the range 78-495 and can also be found in Table 2.
The data yield a total of 2,276 samples making this, to our knowledge, the hitherto largest
integrative DLBCL study.

Similar to above, all data sets were RMA-normalized using custom brainarray CDFs
and the R-package affy. Again, NCBI EIDs were used to avoid non-bijective gene-1D
translations between the array-platforms and the KEGG database. The freely available
R-package DLBCLdata was created to automate the download and preprocessing of the data
sets in a reproducible and convenient manner. See the DLBCLdata documentation (Bilgrau
and Falgreen, 2014) for more information. Subsequently, the data sets were reduced to
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the intersecting 11,908 EIDs present on all platforms. All samples in all data sets, except
for the pilot study GSE11318, were classified as either ABC, GCB, or Type III using the
DAC mentioned above. The same classifier was used in all data sets to obtain a uniform
classification scheme and thus maximize the comparability of the classes across data sets.
Subsequently, the features were reduced to the EIDs present in the NF-kB pathway and
gene-wise centered to have zero mean within each combination of DLBCL subtype and
data set. We thus have a two-way study design—DLBCL subtypes and multiple data
sets—analogous to Example 3. A concise overview of each of the 11 x 3 = 33 classes for the
non-pilot data is provided in Table 2.

The target matrices were constructed from the pilot data in an attempt to use informa-
tion in the directed representation Gy, of the NF-xB pathway obtained from KEGG. The
directed graph represents direct and indirect causal interactions between the constituent
genes. It was obtained from the KEGG database via the R-package KEGGgraph (Zhang
and Wiemann, 2009). A target matrix was constructed for each DLCBL subtype using the
pilot data and the information from the directed topology by computing node contributions
using multiple linear regression models. That is, from an initial T = 0, we update T for
each node o € V(Gpw) through the following sequence:

Ta,a =g+ %
Tha(a)a 7= Tpafa).a T 528pa(a)
Ta,pa(a) = Ta,pa(oe) + %ﬁpa(a)
Tpa(a)pa(a) = Tpa(a)pa(a) T 72Bpa(e)Bpaa):

where pa(a) denotes the parents of node « in Gy, and where o and B are the residual
standard error and regression coefficients obtained from the linear regression of a on pa(«).
By this scheme the target matrix represents the conditional independence structure that
would result from moralizing the directed graph. If G,y is acyclic then T > 0 is guaranteed.

The penalty setup bears resemblance to Example 3. The Type III class is considered
closer to the ABC and GCB subtypes than ABC is to GCB. Thus, the direct shrinkage
between the ABC and GCB subtypes was fixed to zero. Likewise, direct shrinkage between
subtype and data set combinations was also disabled. Hence, a common ridge penalty A,
a data set—data set shrinkage parameter Apg and a subtype-subtype shrinkage parameter

Agt were estimated. The optimal penalties were determined by SLOOCYV using the penalty
matrix and graph given in (19) below:

ABC Type III GCB
AsT AsT
DS; (M /)\\ - A AsT O Aps O O - Apg O 0 -
A A\ \ AsT A Agr O Apg O - 0 Apg O
DS A DS by DS 0O Agr A 0 0 Apg -+ 0 0 Aps
DS e Aps 0 0 X Asr O - Apg O 0
DS2 (A A 0 Aps 0 Ast XA AsT -+ 0 Aps O
A\ AsT AsT A = 0 0 Aps O Ast A =+ 0 0 Apg |. (19)
DS DS )\DS . . . . . .. . . .
Aps 0 0 Aps O O -« X Agp O
0 Aps 0 0 A 0 - A BN
A )\ DS DS ST ST
ADS DS DS L 0 0 Aps 0 0 Aps - 0 Agp A 4
DSi1 (M
AsT AsT

The optimal penalties were found to be A® = 2.2 for the ridge penalty, A\)q = 0.0022 for the
data set fusion penalty, and A = 0.00068 for the subtype fusion penalty, respectively.
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To summarize and visualize the 33 class precision estimates they were pooled within
DLBCL subtype. Panels A—C of Figure 9 visualizes the 3 pooled estimates as heat maps.
Panels D and F visualize the constructed target matrices for the ABC and GCB subtypes,
respectively. Panel E then gives the difference between the pooled ABC and GCB estimates,
indicating that they harbor differential signals to some degree. We would like to capture
the commonalities and differences with a differential network representation.
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Figure 9: Summary of the estimated precision matrices for the NF-xB pathway. Top row:
Heat maps of the estimated precision matrices pooled across data sets for each
genetic subtype. Middle row from left to right: The pooled target matrix for ABC,
the difference between the pooled ABC and GCB estimates, and the pooled target
matrix for GCB. Bottom: The color key for the heat maps.

The estimated class-specific precision matrices were subsequently scaled to partial cor-
relation matrices. Each precision matrix was then sparsified using the IFDR procedure
of Section 4.3. Given the class an edge was selected whenever 1 — [FDR > 0.999. To
compactly visualize the the multiple GGMs we obtained signed edge-weighted total net-
works mentioned in Section 4.4. Clearly, for inconsistent connections the weight would
vary around zero, while edges that are consistently selected as positive (negative) will have
a large positive (negative) weight. These meta-graphs are plotted in Figure 10. Panels
A—C give the signed edge-weighted total networks for each subtype across the data sets.
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They show that (within DLBCL subtypes) there are a number of edges that are highly
concordant across all data sets. To evaluate the greatest differences between the ABC and
GCB subtypes, the signed edge-weighted total network of the latter was subtracted from
the former. The resulting graph Gagc_gcp can be found in Panel D. Edges that are more
stably present in the ABC subtype are represented in orange and the edges more stably
present in the GCB subtype are represented in blue. Panel F represents the graph from
panel D with only those edges retained whose absolute weight exceeds 2. In a sense, the
graph of panel F then represents the stable differential network. The strongest connections
here should suggest places of regulatory deregulation gained or lost across the two subtypes.
Interestingly, this differential network summary shows relatively large connected subgraphs
suggesting differing regulatory mechanisms.
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Figure 10: Summary of estimated GGMs for the NF-xB pathway. Panels A-C": Graphs
obtained by adding the signed adjacency matrices for each subtype across the
data sets. The edge widths are drawn proportional to the absolute edge weight.
Panel D: Graph obtained by subtracting the summarized signed adjacency ma-
trix of GCB (panel A) from that of ABC (panel C). Edge widths are drawn
proportional to the absolute weight and colored according to the sign. Orange
implies edges more present in ABC and blue implies edges more present in GCB.
Panel E: As the graph in panel D, however only edges with absolute weight > 2
are drawn. Panel F: As the graph in panel E, but with an alternative layout.
Far right-panel: EID key and corresponding HGNC curated gene names of the
NF-xB pathway genes. Genes that are connected in panel F are shown bold.
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The graph in panel F of Figure 10 then conveys the added value of the integrative fusion
approach. Certain members of the CCL, CXCL, and TNF gene families who were highly
central in the analysis of Section 6.1 are still considered to be central here. However, it
is also seen that certain genes that garnered high centrality measures in the single data
set analyzed in Section 6.1 do not behave stably across data sets, such as CXCL2. In
addition, the integrative analysis appoints the BCL2 gene family a central role, especially
in relation to the ABC subtype. This contrasts with Section 6.1, where the BCL2 gene
family was not considered central and appeared to be connected mostly in the non-ABC
classes. Moreover, whereas the analysis of the single data set could not identify a signal for
MYDSS, the integrative analysis identifies MYDS88 to be stably connected across data sets.
Especially the latter two observations are in line with current knowledge on deregulation in
the NF-xB pathway in DLBCL patients. Also in accordance with the literature is the known
interaction of LTA with LTB seen in panel F of Figure 10 (Williams-Abbott et al., 1997;
Browning et al., 1997) which here appear to be differential between ABC/GCB. Thus,
borrowing information across classes enables a meta-analytic approach that can uncover
information otherwise unobtainable through the analysis of single data sets.

7. Discussion and Conclusion

We considered the problem of jointly estimating multiple inverse covariance matrices from
high-dimensional data consisting of distinct classes. A fused ridge estimator was proposed
that generalizes previous contributions in two principal directions. First, we introduced
the use of targets in fused ridge precision estimation. The targeted approach helps to
stabilize the estimation procedure and allows for the incorporation of prior knowledge. It
also juxtaposes itself with various alternative penalized precision matrix estimators that pull
the estimates towards the edge of the parameter space, i.e., who shrink towards the non-
interpretable null matrix. Second, instead of using a single ridge penalty and a single fusion
penalty parameter for all classes, the approach grants the use of class-specific ridge penalties
and class-pair-specific fusion penalties. This results in a flexible shrinkage framework that (i)
allows for class-specific tuning, that (ii) supports analyzes when a factorial design underlies
the available classes, and that (iii) supports the appropriate handling of situations where
some classes are high-dimensional whilst others are low-dimensional. Targeted shrinkage
and usage of a flexible penalty matrix might also benefit other procedures for precision
matrix estimation such as the fused graphical lasso (Danaher et al., 2014).

The targeted fused ridge estimator was combined with post-hoc support determination,
which serves as a basis for integrative or meta-analytic Gaussian graphical modeling. This
combination thus has applications in meta-, integrative-, and differential network analysis of
multiple data sets or classes of data. This meta-approach to network analysis has multiple
motivations. First, by combining data it can effectively increase the sample size in settings
where samples are relatively scarce or expensive to produce. In a sense it refocuses the oth-
erwise declining attention to obtaining a sufficient amount of data—a tendency we perceive
to be untenable. Second, aggregation across multiple data sets decreases the likelihood of
capturing idiosyncratic features (of individual data sets), thereby preventing over-fitting of
the data.
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Insightful summarization of the results is important for the feasibility of our approach
to fused graphical modeling. To this end we have proposed various basic tools to summarize
commonalities and differences over multiple graphs. These tools were subsequently used in
a differential network analysis of the NF-xB signaling pathway in DLBCL subtypes over
multiple GEP data sets. This application is not without critique, as it experiences a problem
present in many GEP studies: The classification of the DLBCL subtypes (ABC and GBC)
is performed on the basis of the same GEP data on which the network analysis is executed.
This may be deemed methodologically undesirable. However, we justify this double use of
data as (a) the pathway of interest involves a selection of genes whereas the classification
uses all genes, and (b) the analysis investigates partial correlations and differential networks
whereas the classification, in a sense, considers only differential expression. Furthermore,
as in all large-scale genetic screenings, the analyzes should be considered ‘tentative’ and
findings need to be validated in independent experiments. Notwithstanding, the analyzes
show that the fusion approach to network integration has merit in uncovering class-specific
information on pathway deregulation. Moreover, they exemplify the exploratory hypothesis
generating thrust of the framework we offer.

We see various inroad for further research. With regard to estimation one could think of
extending the framework to incorporate a fused version of the elastic net. Mixed fusion, in
the sense that one could do graphical lasso estimation with ridge fusion or ridge estimation
with lasso fusion, might also be of interest. From an applied perspective the desire is to
expand the toolbox for insightful (visual) summarization of commonalities and differences
over multiple graphs. Moreover, it is of interest to explore improved ways for support
determination. The IFDR procedure, for example, could be expanded by considering all
classes jointly. Instead of applying the IFDR procedure to each class-specific precision
matrix, one would then be interested in determining the proper mixture of a grand common
null-distribution and multiple class-specific non-null distributions. These inroads were out
of the scope of current work, but we hope to explore them elsewhere.

7.1. Software Implementation

The fused ridge estimator and its accompanying estimation procedure is implemented in
the rags2ridges-package (Peeters et al., 2019) for the statistical language R. This package
has many supporting functions for penalty parameter selection, graphical modeling, as well
as network analysis. We will report on its full functionality elsewhere. The package is freely
available from the Comprehensive R Archive Network: http://cran.r-project.org/.
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Appendix A. Geometric Interpretation of the Fused Ridge Penalty

Some intuition behind the fused ridge is provided by pointing to the equivalence of penalized
and constrained optimization. To build this intuition we study the geometric interpretation
of the fused ridge penalty in the special case of (6) with T = 0. In this case \gy = A
for all g, and Ay g4, = Ay for all g1 # g2. Clearly, the penalty matrix then amounts to

A = Mg+ Af(Jg — Ig). Matters are simplified further by considering G = 2 classes and
by focusing on a specific entry in the precision matrix, say (24);; = wj(?,), for g =1,2. By
doing so we ignore the contribution of other precision elements to the penalty. Now, the
fused ridge penalty may be rewritten as:

A A e o A A
Sz 2el2) + 2050 S s - 22 = 2 (el + eal2) + Ao - el

g1=1g2=1

Subsequently considering only the contribution of the w@ entries implies this expression

can be further reduced to: o
AT/ (12 @\2] L Ar ) @2 AT AT )2 (2)\2 1) (2
B} [(“’jj') + (wy7) } 5 (W —w) = [(“’jj') + (wj7) } — Apwjir Wiy

(1)

It follows immediately that this penalty imposes constraints on the parameters Wi and

()

Wi amounting to the set:

{th o) em s 2N [ 4 @] Al b, a0
for some ¢ € R;. It implies that the fused ridge penalty can be understood by the implied
constraints on the parameters. Figure 11 shows the boundary of the set for selected values.

Panel 11A reveals the effect of the fused, inter-class penalty parameter Ay (while keeping
A fixed). At Ay = 0, the constraint coincides with the regular ridge penalty. As Ay increases,
the ellipsoid shrinks along the minor principal axis * = —y with no shrinkage along x = y.
In the limit Ay — oo the ellipsoid collapses onto the identity line. Hence, the parameters w‘;;,)
and wﬁ,) are shrunken towards each other and while their differences vanish, their sum is not
affected. Hence, the fused penalty parameter primarily shrinks the ‘sum of the parameters’,
but also fuses them as a bound on their sizes implies a bound on their difference.

Panel 11B shows the effect of the intra-class A penalty (while keeping A fixed). When
the penalty vanishes for A — 0 the domain becomes a degenerated ellipse (i.e., cylindrical

for more than 2 classes) and parameters wj(l,) ](i,) may assume any value as long as

their difference is less than \/2c¢/A¢. For any A > 0, the parameter-constraint is ellipsoidal.
As X increases the ellipsoid is primarily shrunken along the principal axis formed by the
identity line and along the orthogonal principal axis (y = —z). In the limit A\ — oo the
ellipsoid collapses onto the point (0,0). It is clear that the shape of the domain in (20) is
only determined by the ratio of A and Ay.

and w

41



BILGRAU & PEETERS ET AL.

N — A=1 )\fZO N — )\f:l A=0
A=1 }\f:l )\f:l A=0.1
A=1 )\f=10 )\f=1 A=1
- A=1 - M=1,A=10
o o M=1A=1000 o
S o S o |
—_| |
I T e
o ~N_|
| |
I I I [ I I I I [ I
-2 -1 0 1 2 -2 -1 0 1 2
1 1
of) of)

Figure 11: Visualization of the effects of the fused ridge penalty in terms of constraints.
The left panel shows the effect of Ay for fixed A\. Here, Ay = 0 is the regular
ridge penalty. The right panel shows the effect of A while keeping A; fixed.

The effect of the penalties on the domain of the obtainable estimates can be further
understood by noting that the fused ridge penalty (4) can be rewritten as

A9~ Tg) + (o — Too) |7+ 2 D[, — Tgy) — (o~ To)|| 7 (21)
91,92 g1,92

for some penalties X and A 7. The details of this derivation can be found in Section A.1
below. The first and second summand of the rewritten penalty (21) respectively shrink the
sum and difference of the parameters of the precision matrices. Their contributions thus
coincide with the principal axes along which two penalty parameters shrink the domain of
the parameters.

A.1. Alternative Form for the Fused Ridge Penalty
This section shows that the alternative form (21) for the ridge penalty can be written in the

form (4). We again assume a common ridge penalty A\;y = A and a common fusion penalty
Agrge = Ag for all classes and pairs thereof. To simplify the notation, let A, = €, — T,.
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Now,
F QBN Ay, {Tg})
=X Z H g1~ 91 Qg,— Ty, HF+)\f Z H 91— 91 - (ng_ng)HQF
91,92 91,92
=AY A+ Aplly+Ar D (A - Al
91,392 g1,92
A (1Al + [ Awlls +2(A0, Ag)) + As 3 [[Ag, — A3
91,92 91,92
=X Z (2HA91H; + 2HA92H§7’ a HAgl o Ang;) + 5‘f Z HAgl_ A92Hiﬂ
91,92 91,92
= 4AGZ 1AGlE =AD" [1Ag = Agllp + 35 D Ay — A7
91,92 91,92
= 4AGZ Agllf+Or =2 " Ag — Asll
91,92
- 4/\GZ H Q- T, HF )‘f - Z H a1~ Tg) (ng_ng)Hiﬂ-
g 91,92

Hence, the alternative penalty (21) is also of the form (4) and thus the fused ridge of (21)
is equivalent to (4) for appropriate choices of the penalties.

Appendix B. Results and Proofs

Section B.1 contains supporting results from other sources and results in support of Al-
gorithm 1. Section B.2 contains proofs of the results stated in the main text as well as
additional results conducive in those proofs.

B.1. Supporting Results

Lemma 8 (van Wieringen and Peeters 2016) Amend the log-likelihood (1) with the
ly-penalty

A 2
Y-z
with T € SY denoting a fized symmetric positive semi-definite target matriz, and where

A € (0,00) denotes a penalty parameter. The zero gradient equation w.r.t. the precision
matriz then amounts to

Q' (S-AT) -\ =0, (22)
whose solution gives a penalized ML ridge estimator of the precision matrix:
R 1 /2 -1
Q) = { [up + (8- AT)? +5(8- )\T)}

Lemma 9 (van Wieringen and Peeters 2016) Consider Q(\) from Lemma 8 and de-
fine [QN)]™1 = B(N\). The following identity then holds:

S — AT = 3(\) — AQ(N).
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Lemma 10 Let A € SC be a matriz of fized penalty parameters such that A > 0. Moreover,
let {Ty} € SY. Then if diag(A) > 0, the problem of (5) is strictly concave.

Proof (Proof of Lemma 10) By diag(A) > 0, it is clear that the fused ridge penalty (4)
is strictly convex as it is a conical combination of strictly convex and convex functions.
Hence, the negative fused ridge penalty is strictly concave. The log-likelihood of (3) is a
conical combination of concave functions and is thus also concave. Therefore, the penalized
log-likelihood is strictly concave. |

B.2. Proofs and Additional Results

Proof (Proof of Proposition 1) To find the maximizing argument for a specific class of
the general fused ridge penalized log-likelihood problem (5) we must obtain its first-order
derivative w.r.t. that class and solve the resulting zero gradient equation. To this end we
first rewrite the ridge penalty (4) into a second alternative form. Using that A = AT,
and keeping in mind the cyclic property of the trace as well as properties of €2, and T,
stemming from their symmetry, we may find:

fFRN({Qg}§ A, {Tg})

A A
= 0Tl + 2 (@0 -T) - QT
g

91,92
g

Age A
9% b [(92—Ty) T (2 —T)| = Y- 4% tr (25, —Ty) (2 —Ty0)| . (23)
i

where \jo = Zg/ Agg' denotes the sum over the gth row (or column) of A. Taking the
first-order partial derivative of (23) w.r.t. £y, yields:

(f)gngRH({Qgh A, {Tg})

= Agoe [2(82g,—Ty,) — (24— Ty,) o I)] — Z Aggo [2(€2g—Ty) — (@g—Ty) o L. (24)
9790

The first-order partial derivative of (3) w.r.t. £, results in:

0 0
8990 E({Qg}§ {Sg}) = Wgo zg: ng{ In |Qg‘ - tr(SgQg)}v
= Ty [2(9501_ Sgo) - (Q;)l_ Sgo) © Ip] : (25)
Subtracting (24) from (25) yields
ngo(ﬂg;gl_ Sgo) - )‘QOG(QQO_TQO) + Z )‘990 (Qg_Tg) ° (2']:0 - Ip)a (26)
g#go
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which, clearly, is 0 only when 7,4, (2" = Sg,) = Agoe(90=Tgq) + 35240 Aago (2g—Ty) = 0.
From (26) we may then find our (conveniently scaled) zero gradient equation to be:

.1 Ao~ A
ng - Sgo - A(ng_Tgo) + Z ﬂ(ﬂg_Tg) =0. (27)
g0 atgo 90

Now, rewrite (27) to

A —1 _ _
Q- Sgo - )‘go (ng - Tgo) =0, (28)

g0

where S, = Sy, — > g4 ng;;‘) (Qy— Ty), Ty = Typ, and Ay, = Agye/Ng,- It can be seen

that (28) is of the form (22). Lemma 8 may then be applied to obtain the solution (7). W

Corollary 11 Consider the estimator (7). Let Q, (A, {Qy}yzg) be the precision matriz
estimate of the gth class. Also, let diag(A) > 0 and assume that all off-diagonal elements
of A are zero. Then £, (A7 {Qg/}g/#) reduces to the non-fused ridge estimate of class g:

Yy A B
+<S —“’T)
2 g Ng g

(29)

R A A 2
Qg (A {Qy }g2g) = Qg(Ngg) = [igglp + (S - ggg Tg)

Proof (Proof of Corollary 11) The result follows directly from equations (7) and (8) by
using that 30 Agy = D0z, Agrg = 0 for all g. |

Lemma 12 Let {Ty} € 8§ and assume Agg € Ryy in addition to 0 < \gy < 00 for all

g #g. Then
tim €2 (A, {2 }y29) HF < co.

Agg—+00™

Proof (Proof of Lemma 12) The result is shown through proof by contradiction. Hence,
suppose

lim €24 (A7 {Qg’}g’s‘ég)HF
Agg—+00
is unbounded. Let d[-];; denote the jth largest eigenvalue. Then, as
1/2

[0 (A 920 }20) | = Zd[ ARy }y 76g)r 7

at least one eigenvalue must tend to infinity along with Ayy. Assume without loss of gener-
ality that this is only the first (and largest) eigenvalue:

Tim d[ o(A {Qg}g;ﬁg)} — 0(A],), (30)

Agg—r00~
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for some v > 0. Now, for any )y, the precision can be written as an eigendecomposition:

p
Qg (A, {Qg/}g/7§g) = d11V1V1r + Z dijjVjT, (31)
Jj=2

where the dependency of the eigenvalues and eigenvectors on the target matrices and penalty
parameters has been suppressed (for notational brevity and clarity). It is the first summand
on the right-hand side that dominates the precision for large Agq. Furthermore, this ridge
ML precision estimate of the gth group satisfies, by (26), the following gradient equation:

”g(ngl_ Sg) — /\gg(ﬂg_Tg) - Z Ag’g(ﬂg_Tg) + Z Agrg(2g=Ty) = 0.
g'#g 9’79

We now make three observations: (i) Item i of Proposition 4 implies that Qg (A {Qy }grzg) is
always positive definite for gy € Ry . Consequently, limy - 192, (A, {le}g/;,gg)ilHF <
oo; (ii) The target matrices do not depend on Agq; and (iii) The finite A\;yr ensure that the
norms of 2y can only exceed the norm of Qg by a function (independent of A\yq) of the
constant Ayy. Hence, in the limit, the norms of the €2, cannot exceed the norm of Qg. These
observations give that, as Ay, tends towards infinity, the term )\gg(ﬂg—Tg) will dominate

the gradient equation. In fact, the term \;,Q, will dominate as, using (30) and (31):

A~

0 ~ —Ag(f2y —Ty)

~ —)\ggdnvle + )\ggT
—)\;;'7v1v1r + gy T
—)\;;'7 (viv] + Ayg T)

1+ T
—Agg 'V1Vy .

Q

%

This latter statement is contradictory as it can only be true if the first eigenvalue tends to
zero. This, in turn, contradicts the assumption of unboundedness (in the Frobenius norm)
of the precision estimate. Hence, the fused ridge ML precision estimate must be bounded. B

Proof (Proof of Proposition 4)
(i) Note that (27) for class g may be rewritten to

>‘gg’
Age

A1 e ~
Q, — S, - 19, - Ty+ )
g 9'#g

(Qy—Ty)| p =0,

implying that (7) can be obtained under the following alternative updating scheme to (8):

_ ) P
Sy=8, Ty=T,+»
9'#g

— Aoe
)\g. (le— Tg/)7 and )\g = ngg .
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Now, let d[ - ];; denote the jth largest eigenvalue. Then

2
a{i0 ) = B(sg - ngg)Lj 4 {d [;(sg _ Xng)Lj} + 3, >0,

when A, > 0. As )\, = >y (Agrg/mg) and as Agry may be 0 for all ¢’ # g, Q, is guaranteed
to be positive definite whenever \;y € Ry .

(ii) Note that >, ., Agy = >_ 2y Agrg = 0 implies that Qg reduces to the non-fused
class estimate (29) by way of Corollary 11. The stated right-hand limit is then immediate
by using A\gg = 0 in (29). Under the distributional assumptions this limit exists with
probability 1 when p < n,.

(iii) Consider the zero gradient equation (27) for the gth class. Multiply it by ng/Aze
to factor out the dominant term:

;”ng. Q, 1 ;;isg — (= Ty) + > f\ggg (Qy—Ty)=0. (32)
g'#9

When A\gg — 007, Age = Zg, Aggr — 00, implying that the first two terms of (32) vanish.
Under the assumption that \;y < oo for all ¢’ # g we have that Ayg/Aje — 0 when
Agg — 0o~ for all ¢’ # g. Thus, all terms of the sum also vanish as Lemma 12 implies that
the Qg are all bounded. Hence, when A\gy — oo™ and gy < oo for all ¢’ # g, the zero
gradient equation reduces to Qg— T, = 0, implying the stated left-hand limit.

(iv) The proof strategy follows the proof of item iii. Multiply the zero gradient equation
(27) for the gith class with ng, /Ay, 4, to obtain:

A p
(991 - T91) + E 7 (Qg’ - Tg’) =0. (33)
9/7691 g192

Ny -1 _ Ng,

. Agie
Q, !

>\9192

1 A Sgl -
9192

Ag1g2
The first two terms are immediately seen to vanish when Ay 4, — co™. Under the assump-
tion that all penalties except Ay, 4, are finite, we have that Ay e/Ag g, — 1 for Ag 4, — 007.
Similarly, all elements of the sum term in (33) vanish except the element where ¢’ = go.
Hence, when A, g, — 00~ and when Ay, < oo for all {g}, g5} # {91, g2}, the zero gradient
equation for class g1 reduces to:

_(le - Tg1) + (ng - ng) =0. (34)

Conversely, by multiplying the zero gradient equation (27) for the goth class with ng, /Mg, g,
one obtains, through the same development as above, that the zero gradient equation for
class go reduces to the ng-analogy of equation (34). The result (34) then immediately
implies the stated limiting result. |

Corollary 13 Consider item v of Proposition 4. When, in addition, T4 = Tg,, we have
that

lim  (Qy —Ty)= lim (Q,-T,) =  Q,=0,.

Agygy 00~ Agygg 00~
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Proof (Proof of Corollary 13) The implication follows directly by using Ty, = T, in (34). B

Proof (Proof of Proposition 5) The result follows directly from Proposition 1 and Lemma
9. |

Proof (Proof of Proposition 7) Note that line 8 of Algorithm 1 implies that the initializing
estimates are positive definite. Moreover, regardless of the value of the fused penalties (in
the feasible domain), the estimate in line 11 of Algorithm 1 is positive definite as a conse-
quence of Proposition 4. [ |
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remainder of the results for Simulation Scenario 5. Last, Section 6 gives the remainder of
the results for Simulation Scenario 6.

1. Alternative Fused Ridge Solutions

This section derives two equivalent (in terms of Equation 7) alternative updating schemes to
(8). The motivation for the exploration of these alternative recursive estimators is twofold.
First, alternative recursions can exhibit differing numerical (in)stability for extreme values of
the penalty matrix A = [y, g,]. Second, they provide additional intuition and understanding
of the targeted fused ridge estimator.

The general strategy to finding the alternatives is to rewrite the gradient equation (27)
into the non-fused form (28), which we will repeat here:

- Sgo - )‘go (ng_ Tgo) =0, (Sl)

Where Ago> Tgo, and Sy, do not depend on ng Note that an explicit closed-form solution
o (S1) exists in the form of (7).

1.1 First Alternative

The first alternative scheme is straightforward. Rewrite (27) to

= ”goﬂ_ NgySgy — )‘go-(ﬁgo —Tg) + Z Aggo (29— Tg) (S2)
g#go

. N A
= ngoﬂgol — NgySgy — Agoe § 2go— [Tgo + Z /\ggo (Qg_ Tg)] )
9790 goe

where \jjo = Zg Aggo- In terms of (S1), we thus have the updating scheme given in equation
(9). As stated in the main text, it has the intuitive interpretation that a fused class target is
used which is a combination of the class-specific target and the ‘target corrected’ estimates
of remaining classes.

1.2 Second Alternative

We now derive a second alternative recursion scheme. Add and subtract Ag,e )
o (S2) and rewrite such that:

97#90 )‘990 Qg7

0= ngoﬁgiol* NgySgo — )‘goi(ﬂgo —Tygo) + Agoe Z Aggo§2g + Z Aggo (29— Tg) — Agge Z Aggo§2g
9#90 9#90 9#90
e L D DEV ] D BEWICIED SRS ISP PV ¥
9790 97#90 9790 9790

= ngoﬂgol_ Tgo Sgo - )‘go° [ng - (Tgo + Z Aggoﬂg)] - Z )‘ggoT{J go' Z AQ‘ZOQ

9790 97#90 9790

qqu ] Agoe [9 - (TQ0 + > ,\ggoﬂg>] )

90 g#g0 9790 9#90

= Ny Qg—ol — Nygo [Sgo + Age1 Z Aggo§2g + Z
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Dividing by ng, gives

A Agoe—1 A Agoe | A
0= 9901 — |Se0 + g:Lg Z Aggo§2g + Z ngggo Tg] - =% [ﬂgo - (Tgo + Z Aggo“y)] )
0 0

9790 9790 Mg 9790
which brings the expression to the desired form (S1) with the updating scheme

= Agoge—1 A - < Agoe
Sg0 = Sgo + —et— Z Aggo§2g + Z %Tw Tgy =Ty, + Z AggoSlg, and Ay, = ~ot,
90

n n
90 g#g0 9790 9790 90

Again, a solution for ng with fixed €, for all g # go, is available through Lemma 8 (van
Wieringen and Peeters, 2016) and is given in (7).

1.3 Motivation

Though seemingly more complicated, these alternative updating schemes can be numerically
more stable for extreme penalties. In both alternatives, we see that Sgo is positive semi-
definite for (nearly) all very large and very small penalties. Likewise, Tgo is always positive
definite. Compare the alternative expressions to the updating scheme given by (8) which can
be seen to be numerically unstable for very large penalties: For very large Agq or Ay 4, the
Sy, in (8) may be a matrix with numerically extreme values. This implies ill-conditioning
and numerical instability under finite computer precision. On the other hand, ‘updating’
the target matrix will generally lead to updates for which the resulting estimator is not

rotationally equivariant. This implies a reduction in computational speed.

2. Estimation in Special Cases

Here we explore scenarios for which we arrive at explicit targeted fused ridge estimators.
These explicit solutions further insight into the behavior of the general estimator and they
can provide computational speed-ups in certain situations. Three special cases are covered:

L Agy =0 for all g # ¢ or equivalently >° , Agy = Age = Agg for all g;
II. 21 =---=Qg and Ty, =T for all g;
III. Ty =T for all g, Agg = A for all g, Ay 4, = Ay for all g1 # g2, and Ay — c0™.

2.1 Special Case 1

When >, Agy = Age = Agg for all g, we have that >, Agy =D, Agg = 0 for all g.
Hence, all fusion penalties are zero. The zero gradient equation (27) for class g then no
longer hinges upon information from the remaining classes ¢’. The targeted fused precision
estimate for class g then reduces to (29) of Corollary 11. This case thus coincides, as
expected, with obtaining G decoupled non-fused ridge precision estimates. A special case
that results in the same estimates occurs when considering Ay 4, = Ay for all g1 # g2 and
Ay is taken to be 0.
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2.2 Special Case 11

Suppose 2, = © and T, = T for all g. Consequently, the fusion penalty term vanishes
irrespective of the values of the Ay, g,, g1 # g2. The zero gradient equation (27) then reduces
to

N

0=nyQ 1 —nySy — \y(Q2—T),

for each class g. Adding all G equations implies:

G G G
Ozz:ngfl_l—z:ngsg— Z)\gg (Q—T)
g=1 g=1 g=1
= 1o — neSe — tr(A) (2 — T)
S [s ]0g -

We recognize that (S3) is of the form (22). Lemma 8 may then be directly applied to obtain
the solution:

) 1 2y -1
Q(A) = { [)\*Ip + (8. - )\*T)Q} +5(Se - )\*T)} : (S4)

where \* = tr(A)/ne. Hence, this second special case gives a non-fused penalized estimate
that uses the pooled covariance matrix. It can be interpreted as an averaged penalized
estimator. It is of importance in testing equality of the class precision matrices (see Section
4.1 of the main text).

2.3 Special Case 111

Suppose that Ty = T for all g, that A\jy = A for all g, and that A\ 4, = Ay for all g; # go.
The main optimization problem then reduces to (6). Clearly, for A\ — co™ the fused penalty

A A
PR AT = 53 19— T+ 5 3 ([0~ 90)] 15
g 91,92

is minimized when 2 = Q9 = --- = Qg. This is also implied, more rigorously, by
Corollary 13. Hence, the problem reduces to the special case of section 2.2 considered
above. The solution to the penalized ML problem when Ay = oo is then given by (S4)
where tr(A) now implies G\.

3. Fused Kullback-Leibler Approximate Cross-Validation
3.1 Motivation

In ¢;-penalized estimation of the precision matrix, penalty selection implies (graphical)
model selection: Regularization results in automatic selection of conditional dependencies.
One then seeks to select an optimal value for the penalty parameter in terms of model
selection consistency. To this end, the Bayesian information criterion (BIC), the extended
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BIC (EBIC), and the stability approach to regularization selection (StARS) are appropriate
(Liu et al., 2010). The (fused) ¢2-penalty will not directly induce sparsity in precision matrix
estimates. Hence, in fo-penalized problems it is natural to choose the penalty parameters
on the basis of efficiency loss. Of interest are then estimators of the Kullback-Leibler
(KL) divergence, such as LOOCV, generalized approximate cross-validation (GACV), and
Akaike’s information criterion (AIC). While superior in terms of predictive accuracy due
to its data-driven nature, the LOOCYV is computationally very expensive. Vujaci¢ et al.
(2015) proposed a KIL-based CV loss with superior performance to both AIC and GACV.
The proposed method has closed-form solutions and thus provides a fast approximation to
LOOCYV. Here, we extend this method to provide a computationally friendly approximation
of the fused LOOCYV score.

3.2 Formulation

Following Vujaci¢ et al. (2015), we now restate the KL approximation to LOOCYV in the
fused ridge setting. Let the true precision matrix for class g be denoted by €2,. Its estimate,
shorthanded by Qg can be obtained through Algorithm 1. The KL divergence between the
multivariate normal distributions N, (0, Qg_l) and N, (0, Q;l) can be shown to be:

1 qa 1A
KL(8, Q) = 5 { (25 €2) — 2| - p .

For each g we wish to minimize this divergence. In the fused case we therefore consider the
fused Kullback-Leibler (FKL) divergence which, motivated by the LOOCV score, is taken
to be a weighted average of KL divergences:

FKL({Qg} {€})
1 G
—anKL (2, €2,) ; 2{ ) — In|Q, '€y | - } (S5)

The FKL divergence (S5) can, using the likelihood (3), be rewritten as

1 A 1
FKL = ——L({Qg}; {Sy}) + bias, where bias = 5
Te

G
- an tr[ﬂg(ﬂgl — Sg)],
. g=1

and where the equality holds up to the addition of a constant. It is clear that the bias
term depends on the unknown true precision matrices and thus needs to be estimated. The
fused analogue to the proposal of Vujaci¢ et al. (2015), called the fused Kullback-Leibler
approximate cross-validation score or simply approxzimate fused LOOCYV score, then is

FRL(A) = - £({9,}: {S,}) + Dias, (S6)
with
— G 9 A — A~ 2
bias = Z Z{ylg 92 )yig + )\gy;(ﬂg — Qg)ym}a (S7)
g 14=1



BILGRAU & PEETERS ET AL.

Age

and where )\g = The derivation of this estimate is given in Section 3.3 below. One

would then choose A* such that the FKL approximate cross-validation score is minimized:

A* = arg minPﬁ(A), subject to: A > 0 A diag(A) > 0. (S8)
A

The closed form expression in (S6) implies that A* is more rapidly determined than A*.
As seen in the derivation, A* ~ A* for large sample sizes.

3.3 Derivation

Here we give, borrowing some ideas from Vujacié¢ et al. (2015), the derivation of the estimate
(56). Let observation i in class g be denoted by y,, and let S = S;; = yl-gy;;] be the
sample covariance or scatter matrix of that observation. As before, the singularly indexed
S, = nig Z?:q 1 Sig is the class-specific sample covariance matrix. Throughout this section
we will conveniently drop (some of) the explicit notation.

The FKL divergence reframes the LOOCYV score in terms of a likelihood evaluation and
a bias term when S is not left out of class g. We thus study the change in the estimate as
function of the single scatter matrix S. Let §2,(S) = Q," be the estimate in class g when

S is omitted. That is, Qg(S) is part of the solution to the system

Q! + ftaa + La=glS + >y + Ay =0, forall a=1,...,G, (9)
b#a

where g, = );L‘", Lap = %, and where A, is a matrix determined by the remaining data,

penalty parameters and targets. Note that the penalized MLE can be denoted Qg =Q ¢(0),
which corresponds to the ‘full’ estimate resulting from the full gradlent equation (27).
We wish to approximate 2 ¢(S) by a Taylor expansion around O 4(0), ie.:

. R o0,
Q,(S) = 24(0) + 75]’]”
9555

Differentiating (S9) w.r.t. Sj;, the (j,j')th entry in S, and equating to zero yields

o, o, oY,
Q ! Q aa 4 a
T 95, u 53, ~ Ha=dl JJ*'%%‘Lbas
L O A oY, o
SR 0 Jati o Sl b= + 1a=g|E;», for all ! S10
a 8Sjj/ a +zb::u basjjl + [a g] 75 or a 17 ( )

where Ej;/ is the null matrix except for unity in entries (j, j') and (j’,). The third term
is obtained as 9S/0S;;; = E;j» by the symmetric structure of S. This is also seen from the
fact that S =3, Sy E;j. Let

o,

V(S), = 95,5

TR

7’
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and multiply (S10) by S;;» and sum over all j, j' to obtain

~

Q,'V(8)a, " =) paV(S)y = Lfa=g]S, forall a=1,...,G. (S11)
b

a

We seek the solution vector V = {V(S)CL}EZ1 of square matrices for the system of equations
in (S11) which can be rewritten in the following way. Introduce and consider the linear
operator (or block matrix):

Q;l ®f2;1 — praalpy @ L, if a=0b

N={N_,l¢ . where N, = .
{ ab}a,bfl ab {_Mablp@)lp o a;ﬁb

Then V can be verified to be the solution to the system (S10) as

N(V)a=> NguV(8),=0 for a#g, and
b

N(V), = ZNgbV(S)b =S for a=g.
b

Hence we need to invert N to solve for V. The structure of N is relatively simple, but there
seems to be no (if any) simple inverse. Note that N = D — M is the difference of a (block)
diagonal matrix D and a matrix M depending on the u’s:

D, = Q'@ Q.
My = Napr ® Ip-
In terms of the u’s we obtain to first order that
N!'l=D-M)'~D'!'+D'MD,

yielding the approximation

Qy(S) ~ Qy + (g @ Qg + 11522 @ 2)(S)
= Qg + QS + 1, 2SN2, (S12)

where €, = (0). To a first order in pg, this is the same as the approximation

N

Qy(S) = Qy + (0,1 @ Q1 — pgel, ® L) 71(S).
We also need an approximation for ln|Qg(S)\. By first-order Taylor expansion around
S = 0 we have
A A A1 8Qg
Inj 2, (S)] ~ €, (0)] + > tr[ €21 (0) 5| 5
5.5 2

<SL21 A A—1(A A A2 o O2
~ In|Qy(0)] + tr| 2, (g @ Qg + 119482 @ Q) (S)

= In|€2y(0)| + tr (S + 114,Q2SN2), (S13)
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where we have used that < ln\A( )| = tr[A(t)” 1%] and 5o

(Qg ® Qg + Nggﬂg ®
Qg)( jj7)- We now have the necessary equations to derive the FKL approximate cross-
validation score.
Define

f(A,B) = In|B| — tr(BA)

(S14)
by which the identity
Tig
Z f(Sig: Qg) = ngf(Sg, Q) (S15)
=1
holds for all g. The full likelihood (3) in terms of f is given by
“n “ n
LUR Y {Sg}) o Y 2 {0 —r(28,) | = Y Z2F(S,, ), (S16)
g=1 g=1
while the likelihood of a single S;; is
1 1
Lig(£2g; Sig) o i{ln 92| — tr(ﬂgsig)} = gf(siwﬂg)- (S17)

In our setting, the fused LOOCYV score is given by:

G ng
LOOCV = —722% (€2,79:S5)
Mo i1
(17) gG o
S 3 SEVERE S
° g=11i=1

1 G

_77.2 % Z[f(sig’ﬂg) + f(Si’g’Q;ig) - f(sigvﬂg)}

G Mg
i*nizngf *%Z% { ig> ;lg)*f(smﬂg)}
g=1 i=1
(S16) 1 G & R
R UNHERIEETS 9 SIFICH ROEFICHE B
g:l i=1
(S14) 1 G A A
L L5 (8)) - o 0D (i) - tr(6098,,) — Inlfy |+ tr(€2,Si)].

Il
—
.
Il
-

g9

Now, substitution of (S12) and (S13) gives the FKL approximate cross-validation score as
an approximation to the fused LOOCYV score:

G n
1 g

LOOCV ~ FKL = —7c({ng} {S,}) +

glzl
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where

tr (S + 11502 SN?) — tr(SQ + 114,Q2SQ?)

tr (€2 SQ) + f1gg tr(Q2SN?) — tr(SQ) — pugq tr(QSQ?)

tr(S ) + lgg tr(SQ ) — tr(SQ) — Ugg tr(SQ?’)

tr[S(Q% — )] + g tr[S(Q — 0%)]

= ¥ig(Q° = Q)y iy + 1ggy iy (R — )y, (S18)

To arrive at (S18) we have used the linear and cyclic properties of the trace operator. As
S = ylgng, the cyclic property implies the final equality since tr(SA) = tr(ylgyng)

(ngAylg) yLAyZ»g. Equation (S18) is equivalent to the summand in (S7).

4. Additional Results Simulation Scenario 2

604 —+—— ——t—— :

50| SNIUaqoI4

loss

5
.
SS0| onEIpEND

Ng

Figure S1: Results for simulation Scenario 2i. Comparison of the targeted versus the un-
targeted approach in the banded population setting. We consider G = 2 classes
with the population precision matrix 2 for each class being a banded matrix
with p = 50 and k£ = 25 bands. The considered class sample sizes are n, €
{25,50,100}. The target matrix is taken to be equal over classes, i.e., T; = Ts.
The un-targeted situation is represented by T, = 0. The most informative
target is the spot-on target Ty = €. Two diagonal targets are also considered:
Ty = ally, with as = [Zj(S.);jl]/p; and Ty = ael,, with ces = p/tr(S.).
Hence, «a, represents the average of the inverse marginal variances of So and e
represents the inverse of the averaged eigenvalues of S,. Note that the boxplots
in the figure (for each class sample size ny) are ordered according to the legend
(given at the top of the image).
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Figure S2: Results for simulation Scenario 2ii. Comparison of the targeted versus the un-

targeted approach in the star population setting. We consider G = 2 classes with
the population precision matrix €2 for each class being a star matrix with p = 50
and where the first variable represents the internal node. The values of the off-
diagonal entries (1,7) and (j,1) taper-off by 1/(j + 1). The considered class
sample sizes are ng € {25,50,100}. The target matrix is taken to be equal over
classes, i.e., T1 = T2. The un-targeted situation is represented by T, = 0. The
most informative target is the spot-on target T, = €2. Two diagonal targets
are also considered: Ty = a,I,, with a, = [Zj(S.)j_jl]/p; and T, = ael,,
with aeo = p/tr(Se). Hence, a, represents the average of the inverse marginal
variances of S, and o represents the inverse of the averaged eigenvalues of S,.
Note that the boxplots in the figure (for each class sample size n,) are ordered
according to the legend (given at the top of the image).

10



TARGETED FUSED RIDGE PRECISION ESTIMATION: SUPPLEMENTARY MATERIAL

5. Additional Results Simulation Scenario 5

Fused gLasso Frobenius loss #E =3 Fused ridge Frobenius loss #E =3
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Fused gLasso Quadratic loss #E =3
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0.01 1.00 100.00

Figure S3: Comparison of the fused graphical lasso and the fused ridge estimator in the
Barabdsi graph game population setting with ny = 25 and where the number
of edges to add in each time step was taken to be 3. Each square on the two-
dimensional grid represents a (A, A¢)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue
square (and corresponding number) indicate the lowest Risk achieved on the
grid. Left-hand panels give the results for the fused graphical lasso. Right-hand
panels give the results for the fused ridge estimator. Upper panels express the
Risk surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss #E =5 Fused ridge Frobenius loss #E =5
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Figure S4: Comparison of the fused graphical lasso and the fused ridge estimator in the
Barabdsi graph game population setting with ny = 25 and where the number
of edges to add in each time step was taken to be 5. Each square on the two-
dimensional grid represents a (A, Ay)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue
square (and corresponding number) indicate the lowest Risk achieved on the
grid. Left-hand panels give the results for the fused graphical lasso. Right-hand
panels give the results for the fused ridge estimator. Upper panels express the
Risk surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss #E =1 Fused ridge Frobenius loss #E =1
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Figure S5: Comparison of the fused graphical lasso and the fused ridge estimator in the
Barabdsi graph game population setting with ny, = 50 and where the number
of edges to add in each time step was taken to be 1. Each square on the two-
dimensional grid represents a (A, Ay)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue
square (and corresponding number) indicate the lowest Risk achieved on the
grid. Left-hand panels give the results for the fused graphical lasso. Right-hand
panels give the results for the fused ridge estimator. Upper panels express the
Risk surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss #E =3 Fused ridge Frobenius loss #E =3
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Figure S6: Comparison of the fused graphical lasso and the fused ridge estimator in the
Barabdsi graph game population setting with ny, = 50 and where the number
of edges to add in each time step was taken to be 3. Each square on the two-
dimensional grid represents a (A, Ay)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue
square (and corresponding number) indicate the lowest Risk achieved on the
grid. Left-hand panels give the results for the fused graphical lasso. Right-hand
panels give the results for the fused ridge estimator. Upper panels express the
Risk surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss #E =5 Fused ridge Frobenius loss #E =5
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Figure S7: Comparison of the fused graphical lasso and the fused ridge estimator in the
Barabdsi graph game population setting with ny, = 50 and where the number
of edges to add in each time step was taken to be 5. Each square on the two-
dimensional grid represents a (A, Ay)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue
square (and corresponding number) indicate the lowest Risk achieved on the
grid. Left-hand panels give the results for the fused graphical lasso. Right-hand
panels give the results for the fused ridge estimator. Upper panels express the
Risk surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss Probability of edge-presence = 0.02 Fused ridge Frobenius loss Probability of edge—presence = 0.02
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Figure S8: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with n, = 25 and where the prob-
ability of edge-presence is set to 1/p = .02. Each square on the two-dimensional
grid represents a (A, Af)-combination. The number in each square represents
the estimated Risk for the corresponding combination. The blue square (and
corresponding number) indicate the lowest Risk achieved on the grid. Left-hand
panels give the results for the fused graphical lasso. Right-hand panels give
the results for the fused ridge estimator. Upper panels express the Risk surface
under Frobenius loss. Lower panels express the Risk surface under quadratic
loss.
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Fused gLasso Frobenius loss Probability of edge-presence = 0.25 Fused ridge Frobenius loss Probability of edge—presence = 0.25
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Figure S9: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with n, = 25 and where the
probability of edge-presence is set to .25. Each square on the two-dimensional
grid represents a (A, Af)-combination. The number in each square represents
the estimated Risk for the corresponding combination. The blue square (and
corresponding number) indicate the lowest Risk achieved on the grid. Left-hand
panels give the results for the fused graphical lasso. Right-hand panels give
the results for the fused ridge estimator. Upper panels express the Risk surface
under Frobenius loss. Lower panels express the Risk surface under quadratic
loss.
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Fused gLasso Frobenius loss Probability of edge-presence = 0.35 Fused ridge Frobenius loss Probability of edge—presence = 0.35
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Figure S10: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with n, = 25 and where the
probability of edge-presence is set to .35. Each square on the two-dimensional
grid represents a (A, Ay)-combination. The number in each square represents
the estimated Risk for the corresponding combination. The blue square (and
corresponding number) indicate the lowest Risk achieved on the grid. Left-
hand panels give the results for the fused graphical lasso. Right-hand panels
give the results for the fused ridge estimator. Upper panels express the Risk
surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss Probability of edge-presence = 0.02

Fused ridge Frobenius loss Probability of edge—presence = 0.02
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Figure S11: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with ny, = 50 and where the
probability of edge-presence is set to 1/p = .02. Each square on the two-
dimensional grid represents a (A, Ay)-combination. The number in each square
represents the estimated Risk for the corresponding combination. The blue
square (and corresponding number) indicate the lowest Risk achieved on the
grid. Left-hand panels give the results for the fused graphical lasso. Right-hand
panels give the results for the fused ridge estimator. Upper panels express the
Risk surface under Frobenius loss. Lower panels express the Risk surface under

quadratic loss.
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Fused gLasso Frobenius loss Probability of edge-presence = 0.25 Fused ridge Frobenius loss Probability of edge—presence = 0.25
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Figure S12: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with ny, = 50 and where the
probability of edge-presence is set to .25. Each square on the two-dimensional
grid represents a (A, Ay)-combination. The number in each square represents
the estimated Risk for the corresponding combination. The blue square (and
corresponding number) indicate the lowest Risk achieved on the grid. Left-
hand panels give the results for the fused graphical lasso. Right-hand panels
give the results for the fused ridge estimator. Upper panels express the Risk
surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss Probability of edge-presence = 0.35 Fused ridge Frobenius loss Probability of edge—presence = 0.35
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Figure S13: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with ny, = 50 and where the
probability of edge-presence is set to .35. Each square on the two-dimensional
grid represents a (A, Ay)-combination. The number in each square represents
the estimated Risk for the corresponding combination. The blue square (and
corresponding number) indicate the lowest Risk achieved on the grid. Left-
hand panels give the results for the fused graphical lasso. Right-hand panels
give the results for the fused ridge estimator. Upper panels express the Risk
surface under Frobenius loss. Lower panels express the Risk surface under
quadratic loss.
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Fused gLasso Frobenius loss Probability of edge—presence differs per class

Fused ridge Frobenius loss Probability of edge—presence differs per class

M

M

1000.0

100.0

100

10

01

Fused gLasso Quadratic loss Probability of edge-presence differs per class

0.01 1.00 100.00

50.0 100.0

5.0
!

M

10

05
!

01

M

1000.0

100.0

100

10

01

Figure S14: Comparison of the fused graphical lasso and the fused ridge estimator in the
Erdos-Rényi random graph population setting with n, = 25 under class dis-
similarity. The probability of edge-presence is set to 1/p = .02 for class 1 and
.25 for class 2. Each square on the two-dimensional grid represents a (\, Af)-
combination. The number in each square represents the estimated Risk for
the corresponding combination. The blue square (and corresponding number)
indicate the lowest Risk achieved on the grid. Left-hand panels give the results
for the fused graphical lasso. Right-hand panels give the results for the fused
ridge estimator. Upper panels express the Risk surface under Frobenius loss.

0.01 1.00 100.00

Lower panels express the Risk surface under quadratic loss.
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6. Additional Results Simulation Scenario 6
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Figure S15: Timing results (in seconds) for the fused ridge, LASICH, and BMGGM meth-
ods for each of the considered sub-scenarios. The x-axis represents the methods.
The y-axis has a logarithmic scale. Printed numbers above each boxplot then
represent the median runtime for the respective method in a given sub-scenario.
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